Abstract:
One embodiment of the invention is directed to an imaging device comprising an image sensor comprising an array of pixels, and a mask coupled with the image sensor, the mask configured to darken at least one pixel in the array of pixels.
Abstract:
An image sensor assembly having a sensor window positioned in front of an image sensor, having structure and/or characteristics to prevent the formation of condensation on the sensor window. Structure to prevent the formation of condensation includes thin films which can have anti-condensation, anti-reflective, electrically conductive, and/or thermally conductive properties. The sensor window can further have a textured surface to displace water so as to avoid condensation formation on the window surface. The sensor window, and in some embodiments a frame, can be maintained at an elevated temperature proximate to the image sensor during operation to prevent the formation of condensation.
Abstract:
Methods and digital imaging devices disclosed herein are adapted to capture images of a specimen in a chemical reaction using a series of short exposures of light emissions from the specimen over a period of time. The series of short exposures is captured using an array of pixels of an image sensor in the digital imaging device that are configured for performing continuous non-destructive read operations to read out a set of non-destructive read images of the specimen from the pixel array. In one embodiment, images are captured by delaying the read out until at or near the end of the chemical reaction to reduce read noise in the images. The signals read out from the image sensor can be continuously monitored and the capturing of images can be discontinued either automatically or based on a command from a user. The captured images can then be displayed in a graphical display.
Abstract:
An imaging assembly for the viewing, imaging, and analysis of biological, chemical, and/or biochemical samples in gels or other substrates, in which an adjustable camera and lens module, a reflex mirror, and a focal plane mirror, are configured to bend or fold an optical path in order to image a target region, and where the optical path can be reflected along non-orthogonal angles. The imaging assembly is configured to reduce the overall size of the imaging apparatus due to the angles at which the mirrors and camera and lens assembly are positioned relative to each other, which allows for the imaging of relatively larger samples in the target region.
Abstract:
Devices, systems, methods, and kits for contact imaging are provided. A contact imaging device includes an imaging sensor, a fixed fiber faceplate mechanically coupled to the imaging sensor, and an optical filtering layer mechanically coupled to the fixed fiber faceplate. The optical filtering layer can include an interference filter, an absorptive filter, and/or a removable fiber faceplate. The contact imaging device can be used to image fluorescent samples by filtering out excitation light on the basis of wavelength and/or angle of incidence.