Abstract:
This invention is directed to a process for the preparation of a crosslinker composition, comprising the steps of providing a mixture of an aliphatic alcohol A having at least one hydroxyl group and from 1 to 10 carbon atoms, with at least one multifunctional aldehyde C having at least two aldehyde groups -CHO to form a mixture AC, heating the mixture AC to convert at least a part of the multifunctional aldehyde C to its hemiacetal or to its acetal to form a mixture (AC)', adding to the mixture (AC)' least one cyclic urea U or the educts to produce the said cyclic urea U in situ, which cyclic urea U has at least one unsubstituted >NH group, and reacting the mixture thus obtained to form a chemical bond between the nitrogen atom of the at least one unsubstituted >NH group of the at least one cyclic urea U5 and the carbon atom of the least one aldehyde group -CHO of the multifunctional aldehyde C, and coating compositions comprising the said crosslinker composition.
Abstract:
This invention is directed to a process for the preparation of a crosslinker composition, comprising the steps of providing a mixture of an aliphatic alcohol A having at least one hydroxyl group and from 1 to 10 carbon atoms, with at least one multifunctional aldehyde C having at least two aldehyde groups -CHO to form a mixture AC, heating the mixture AC to convert at least a part of the multifunctional aldehyde C to its hemiacetal or to its acetal to form a mixture (AC)', adding to the mixture (AC)' least one cyclic urea U or the educts to produce the said cyclic urea U in situ, which cyclic urea U has at least one unsubstituted >NH group, and reacting the mixture thus obtained to form a chemical bond between the nitrogen atom of the at least one unsubstituted >NH group of the at least one cyclic urea U5 and the carbon atom of the least one aldehyde group -CHO of the multifunctional aldehyde C, and coating compositions comprising the said crosslinker composition.
Abstract:
The invention relates to a coating composition comprising a reaction product UA of at least one multifunctional aldehyde A with at least one cyclic urea U, and a crosslinkable resin having at least one kind of functional groups selected from the group consisting of hydroxyl functional groups, acid functional groups, amide functional groups, amino functional groups, imino functional groups, mercaptan functional groups, phosphine functional groups, and carbamate functional groups, characterised in that the degree of etherification, measured as the ratio «(-0-R) / «(U) of the amount of substance n(-O-R) of alkoxy groups as substituents of the aldehyde carbon atoms of the multifunctional aldehyde chemically bound in the reaction product UA to the amount of substance «(U) of cyclic urea U chemically bound in the reaction products, is less than 0.01 mol/mol, and to a process for the preparation of the reaction product UA.
Abstract:
The invention relates to a crosslinker composition comprising a reaction product of a cyclic urea U and a multifunctional aliphatic aldehyde A , and at least one crosslinker selected from the group consisting of reaction products of an aminotriazine and at least one aldehyde selected from the group consisting of aliphatic monoaldehydes and multifunctional aliphatic aldehydes having the structure Y(CHO) n , where Y is an n-functional aliphatic residue, and n is greater than 1; reaction products of urea and/or cyclic ureas and aliphatic monoaldehydes; alkoxycarbonylaminotriazines; multifunctional isocyanates which may be partially or completely blocked; reaction products of phenols and aliphatic monoaldehydes; multifunctional epoxides; multifunctional aziridines; and multifunctional carbodiimides, wherein any of the crosslinkers which have hydroxyl groups may be etherified with one or more linear, branched, or cyclic aliphatic alcohols.
Abstract:
The present invention relates to a method for preparing tris-substituted alkoxycarbonylamino-1,3,5-triazine compounds, which involves reacting an amino-1,3,5-triazine compound such as melamine, for example, in the presence of excess amounts of carbon monoxide and an alcohol, a sub-stoichoimetric amount of a base, a catalyst system that includes a catalytic amount of a primary catalyst of a group VIII metal or metal salt, and a sub-stoichiometric amount of a co-catalyst of a group I-B or lanthanide series metal or metal salt. The reaction is conducted at a temperature, pressure and length of time sufficient to form a tris-substituted alkoxycarbonylamino-1,3,5-triazine compound in a yield of at least about 5 percent, with improved yields of more than 40 percent being conveniently obtained.
Abstract:
This invention relates to a process to make a reaction product UA of at least one multifunctional aldehyde A with at least one cyclic urea U, by mixing the at least one multifunctional aldehyde A with the at least one cyclic urea U in the presence of at least one alcohol R 1 -OH, and optionally, at least one solvent that has no reactive groups which may react with aldehyde groups, -CO-NH- groups, or hydroxyl groups, to effect an addition reaction to obtain a solution of a product UA, where R 1 is selected from the group consisting of linear, branched or cyclic alkyl groups having from one to twelve carbon atoms, to the reaction product obtained by this process, and to a method of use thereof as crosslinker for coating compositions.