摘要:
A semi-internally manifolded interconnect (10) structured for placement between successive electrolyte elements in stack of elements having a first surface with a level margin (16) extending substantially around the perimeter of the interconnect (10), first (12) and second (14) manifold channels disposed inward from the margin (16), and a plurality of gas-flow channels (24) disposed in a central area of the first surface and extending between and in fluid communication with the first (12) and second (14) manifold channels.
摘要:
A reformer is disclosed in one embodiment of the invention as including a channel to convey a preheated plurality of reactants containing both a feedstock fuel and an oxidant. A plasma generator is provided to apply an electrical potential to the reactants sufficient to ionize one or more of the reactants. These ionized reactants are then conveyed to a reaction zone where they are chemically transformed into synthesis gas containing a mixture of hydrogen and carbon monoxide. A heat transfer mechanism is used to transfer heat from an external heat source to the reformer to provide the heat of reformation.
摘要:
A Fischer Tropsch ("FT") reactor (110) includes at least one FT tube (110). The FT tube (110) may include a catalyst that is designed to catalyze an FT reaction, thereby creating a hydrocarbon from syngas. The FT reactor (100) also includes a primary cooling fluid flow path that extends in a direction that is substantially parallel to the longitudinal length of the FT tube (110). A secondary cooling fluid flow path extends in a direction that is different than the direction of the primary cooling fluid flow path.
摘要:
A Fischer Tropsch ("FT") unit (115) that includes an FT tube (110) that is packed with a catalyst. The catalyst is designed to catalyze an FT reaction to produce a hydrocarbon. An insert (100) that is positioned within the FT tube (110). The insert (100) comprises at least one cross-piece (118) that contacts an inner surface (126) of the FT tube (110) and at least one cross-fin (127) extending from the cross-piece (118). There may be a corresponding second cross-fin adjacent each cross-fin (127). Both the cross-fins and the second cross-fins may be disposed radially outwardly such that the edge (131) of the cross-fins (127) are closer to the inner surface (126) of the FT tube (110) than is the base (133) of the cross-fins (127).
摘要:
A ceramic electrode (122) for a gliding electric arc system. The ceramic electrode (122) includes a ceramic fin (200) defining a spine (202), a heel (206), and a tin (208). A discharge edge (204) of the ceramic fin (200) definces a diverging profile approximately from the heel (206) of the ceramic fin (200) to the tip (208) of the ceramic fin (200). A mounting surface (210) coupled to the ceramic fin (200) facilitates mounting the ceramic fin (200) within the gliding electric arc system. One or more ceramic electrodes (122) may be used in the gliding arc system or other systems which at least partially oxidize a combustile material.
摘要:
A reformer is disclosed in one embodiment of the invention as including a channel to convey a preheated plurality of reactants containing both a feedstock fuel and an oxidant. A plasma generator is provided to apply an electrical potential to the reactants sufficient to ionize one or more of the reactants. These ionized reactants are then conveyed to a reaction zone where they are chemically transformed into synthesis gas containing a mixture of hydrogen and carbon monoxide. A heat transfer mechanism is used to transfer heat from an external heat source to the reformer to provide the heat of reformation.
摘要:
A Fischer Tropsch ("FT") unit (100) includes at least one FT reactor tube (60). The FT reactor tube (60) is configured to convert syngas into one or more hydrocarbon products. Inside the tube is a nano-sized catalyst particles dispersed in a micro-fibrous substrate. The FT reactor tube (60) may be positioned within a cooling block (10) that may be made of aluminum or another metal. The cooling block (10) includes an aperture (15), wherein the FT reactor tube (60) is housed within the aperture (15). At least one cooling channel (20) is located on the cooling block (10). The cooling channel (20) houses at least one cooling tube (70) that is designed to dissipate the heat produced by the FT reaction.
摘要:
A multi-phase mixed protonic/electronic conducting material comprising a protonconducting ceramic phase and an electron conductive ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane, a membrane fabricated with this material selectively transports hydrogen ions through the protonically conductive ceramic phase and electrons through the electronically conducting ceramic phase, which results in ultrahigh purity hydrogen permeation through the membrane. The material has a high electronic conductivity and hydrogen gas transport is rate-limited by the protonic conductivity of the material
摘要:
A fuel cell module (10) with multiple fuel cell stacks having interconnectors with fuel and air flow channels therein arranged in multi-stack columns (14, 16) wherein adjacent stacks are joined by manifold frames (24), and pairs of columns are spaced-apart across a central air plenum (28) in fluid communication with the air flow channels, and fuel flows serially through the stacks along the length of the column. In one embodiment, a series of such modules are configured into a multi-module system.
摘要:
A thermally integrated reformer (10) is located inside the stack furnace (12) housing stacks (14) of solid oxide fuel cells (16). The energy to support the endothermic reformation reaction converting hydrocarbon and water feedstock into hydrogen and carbon monoxide fuel is supplied by heat recovered from the oxidation process in the stack (14) of fuel cells (16). The source of hydrocarbons is de-sulfurized natural gas. Heat transfers to reformers (10) which may be incrementally shielded packed beds (30, 60) of the reactors (18, 19) of the reformer (10) by radiation from the stacks (14), furnace wall (38), or both and by forced convection from the exhausting airflow exiting the stack furnace (12). Temperature gradients in the reformer (10) may be controlled by selective (or incremented) radiation shielding (20) and by counterflow heat exchange to prevent excessive premature cracking in the reformer. Such an optimized design uses a minimum amount of catalyst, yet prevents carbonization from clogging interstices or otherwise rendering the catalyst or catalyst granules (32) ineffective. Alternatively sufficient catalyst may be provided to render the reformation process a heat-limited reaction. In this circumstance, the stacks (132) configured in a module (106) may transfer heat directly to a reformer (110) surrounding the module (106). The air may pass through a heat exchanger (108) or preheater (200) positioned proximate the module (106) in an insulated enclosure (102).