Abstract:
A method is described herein that can use any one of a number of deposition techniques to create a reference region and a sample region on a single biosensor which in the preferred embodiment is located within a single well of a microplate. The deposition techniques that can be used to help create the reference region and the sample region on a surface of the biosensor include: (1) the printing/stamping of a deactivating agent on a reactive surface of the biosensor; (2) the printing/stamping of a target molecule (target protein) on a reactive surface of the biosensor; or (3) the printing/stamping of a reactive agent on an otherwise unreactive surface of the biosensor.
Abstract:
An optical interrogation system is described herein that can interrogate a label-independent-detection (LID) biosensor and monitor a biological event on top of the biosensor without suffering from problematical parasitic reflections and/or problematical pixelation effects. In one embodiment, the optical interrogation system is capable of interrogating a biosensor and using a low pass filter algorithm to digitally remove problematic parasitic reflections contained in the spectrum of an optical resonance which makes it easier to determine whether or not a biological event occurred on the biosensor. In another embodiment, the optical interrogation system is capable of interrogating a biosensor and using an oversampling/smoothing algorithm to reduce oscillations in the estimated location of an optical resonance caused by the problematical pixelation effect which makes it easier to determine whether or not a biological event occurred on the biosensor.
Abstract:
A method is described herein that can use any one of a number of deposition techniques to create a reference region and a sample region on a single biosensor which in the preferred embodiment is located within a single well of a microplate. The deposition techniques that can be used to help create the reference region and the sample region on a surface of the biosensor include: (1) the printing/stamping of a deactivating agent on a reactive surface of the biosensor; (2) the printing/stamping of a target molecule (target protein) on a reactive surface of the biosensor; or (3) the printing/stamping of a reactive agent on an otherwise unreactive surface of the biosensor.