摘要:
The present invention relates, in general, to tissue decellularization and, in particular to a method of treating tissues, for example, heart valves, tendons and ligaments, so as to render them acellular and thereby limit mineralization and/or immunoreactivity upon implementation in vivo.
摘要:
Bioprosthetic devices (10) include an exterior biological tissue member (10-1) which at least partly defines a cavity, and a proteinaceous biopolymer (10-2) which fills the cavity, and intercalates and is chemically bound (fixed) to the tissue of the surrounding biological tissue member. In preferred forms, the bioprosthetic device (10) is a bioprosthetic vertebral disc, having a fibrillar outer annulus which surrounds and defines an interior cavity and is formed by removal of at least a substantial portion of the natural gelatinous core therefrom. The cavity defined by the fibrillar outer annulus may then be filled with a flowable proteinaceous biopolymer (10-2). Preferably, the proteinaceous biopolymer (10-2) is a liquid mixture comprised of human or animal-derived protein material and a di- or polyaldehyde, which are allowed to react in situ to form a cross-linked biopolymer within the cavity. The liquid mixture may be formed in advance of being introduced into the cavity, or may be formed simultaneously during introduction into the cavity.
摘要:
This invention relates to methods of coating the lumenal surface of a blood vessel, or other tissue cavity, and to compositions suitable for use in same.
摘要:
Liquid, injectable, aqueous solutions are transformed in situ to an expandable foam-like, space filling, and adherent biomaterial. Preferably, the foam-like biomaterial is the reaction product of a two-part liquid system to achieve the in situ formation thereof. The liquid system is generally comprised of a protein solution and a cross linker solution which may either be premixed and then applied to a site in need of the biomaterial, or simultaneously mixed and delivered through an in-line mixing/dispensing tip directly to the site. In especially preferred embodiments, an expandable foam-like biomaterial includes the reaction product of human or animal-derived protein material and a di- or polyaldehyde in the presence of a bicarbonate and an acidic titrant amounts sufficient to impart a cellular foam structure to the material.
摘要:
Liquid, injectable, aqueous solutions are transformed in situ to an expandable foam-like, space filling, and adherent biomaterial. Preferably, the foam-like biomaterial is the reaction product of a two-part liquid system to achieve the in situ formation thereof. The liquid system is generally comprised of a protein solution and a cross linker solution which may either be premixed and then applied to a site in need of the biomaterial, or simultaneously mixed and delivered through an in-line mixing/dispensing tip directly to the site. In especially preferred embodiments, an expandable foam-like biomaterial includes the reaction product of human or animal-derived protein material and a di- or polyaldehyde in the presence of a bicarbonate and an acidic titrant amounts sufficient to impart a cellular foam structure to the material.
摘要:
A device (14) and method of anastomosing two hollow bodily organs using a bioadhesive. The method involves apposing apertures in the organs to be joined and applying the bioadhesive, thereby joining the apertures in the organs and allowing movement of fluid or semi-solid material from one of the two organs to the second organ. The device (14) has two inflatable balloons (9, 10) for holding the apertures together while the bioadhesive is applied.
摘要:
A novel solution for cryopreservation of a tissue that includes water, a biocompatible buffer, a cell-impermeant constituent, a cell-permeant constituent, and a radical scavenger is disclosed. The solution may be used to preserve the tissue for later transplantation in an animal, including human, host. The radical scavenger is believed to reduce damage to the tissue that could otherwise occur during sterilization with ionizing radiation.
摘要:
The present invention relates, in general, to tissue decellularization and, in particular to a method of treating tissues, for example, heart valves, tendons and ligaments, so as to render them acellular and thereby limit mineralization and/or immunoreactivity upon implementation in vivo.
摘要:
A prodrug composition containing a cinnamate moiety and a biologically active molecule moiety which can be released by hydrolysis or activated by light is disclosed. The cinnamate moiety can have substituents of various electronically donating or electronically withdrawing groups to modify the cinnamate moiety's electric properties as well as photo reactivities for the purpose of achieving a proper hydrolysis rate of the acyl bond between the biologically active molecule moiety and the cinnamic acid backbone. The biologically active molecule can be any biologically active agent or diagnostic, for example, a chemotherapeutic such as a paclitaxel, campotothecin, doxorubicin, amethopterin, etoposide, or fluconazole. The prodrug composition can be modified to add a carrier moiety on the prodrug composition for targeting or to facilitate uptake of the drug. The prodrug compositions can be activated with an energy source to release the drug at the desired site. Representative energy sources can be in the form of electric force, ultrasound. Light or radiation of a radioactive material which can be administered either externally or internally.
摘要:
Energy-reversible acyl conjugates, intermediates, and related compositions are disclosed. In preferred aspects, examples of such compositions include Formulae (A) and (B).