摘要:
There is disclosed a method of capturing a target nucleic acid, comprising: contacting a target nucleic acid with a capture probe and an immobilized probe, the capture probe comprising a first segment that binds to the target nucleic acid and a second segment that binds to the immobilized probe, wherein the second segment of the capture probe and the immobilized probe comprise L-nucleic acids that can hybridize to one another, wherein the target nucleic acid binds to the first segment of the capture probe, and the second segment of the capture probe binds to the target, thereby capturing the target nucleic acid.
摘要:
There is disclosed a target capture oligomer comprising first and second stem segments differing in length by at least two nucleobases flanking a target-binding segment complementary to a target nucleic acid, wherein under hybridizing conditions: in the absence of the target nucleic acid the target capture oligomer forms a stem-loop, intramolecular hybridization of the first and second stem segments forming the stem, and the target-binding segment forming the loop; and in the presence of the target nucleic acid, the target-binding segment hybridizes to the target nucleic acid disrupting the intramolecular hybridization of the first and second stem segments resulting in the first stem segment being accessible to hybridize to a complementary immobilized probe.
摘要:
There is disclosed a method of capturing a target nucleic acid, comprising: contacting a target nucleic acid with a capture probe and an immobilized probe, the capture probe comprising a first segment that binds to the target nucleic acid and a second segment that binds to the immobilized probe, wherein the second segment of the capture probe and the immobilized probe comprise L-nucleic acids that can hybridize to one another, wherein the target nucleic acid binds to the first segment of the capture probe, and the second segment of the capture probe binds to the target, thereby capturing the target nucleic acid.
摘要:
The invention provides an improved stem-loop target capture oligomer and methods of use. Such a target capture oligomer has a target-binding segment forming a loop flanked by stem segments forming a stem. The stem segments are of unequal length. Such probes show little or no binding to immobilized probes in the absence of a target nucleic acid but offer good target sensitivity. The probes are particularly useful in multiplex methods of detection in which multiple target capture oligomers are present for detecting of multiple target nucleic acids (for example, detecting multiple polymorphic forms of a target gene).
摘要:
The invention provides efficient methods of preparing a target nucleic acid in a form suitable for sequencing. The methods are particularly amenable for preparing high quality nucleic acids for massively parallel sequencing. The methods involve capturing a target nucleic acid from a sample and PCR amplification of the target nucleic acid. The target nucleic acid is captured by binding to a capture probe, which in turn binds to an immobilized probe. The immobilized probe is typically immobilized via a magnetic bead. The captured target nucleic acid is PCR amplified by thermocycling without prior dissociation of the target nucleic acid from the beads. The efficiency of the method lies in part in that both the capture and amplification steps are performed in a single vessel. The amplified nucleic acid can then be sequenced.
摘要:
The invention provides efficient methods of preparing a target nucleic acid in a form suitable for sequencing. The methods are particularly amenable for preparing high quality nucleic acids for massively parallel sequencing. The methods involve capturing a target nucleic acid from a sample and PCR amplification of the target nucleic acid. The target nucleic acid is captured by binding to a capture probe, which in turn binds to an immobilized probe. The immobilized probe is typically immobilized via a magnetic bead. The captured target nucleic acid is PCR amplified by thermocycling without prior dissociation of the target nucleic acid from the beads. The efficiency of the method lies in part in that both the capture and amplification steps are performed in a single vessel. The amplified nucleic acid can then be sequenced.