摘要:
A coated substrate is provided that can include a substrate defining a surface, and an abradable coating on the surface of the substrate. The abradable coating can comprise La2-xAxMo2-y-y′ WyBy′O9-δ forming a crystalline structure, where A comprises Li, Na, K, Rb, Cs, Sc, Y, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, Be, Mg, Ca, Sr, Ba, Cu, Bi, Cd, Zn, Ag, Au, Pt, Ir, Rh, Ru, Pd, or combinations thereof; 0
摘要:
A coated substrate is provided that can include a substrate defining a surface, and an abradable coating on the surface of the substrate. The abradable coating can comprise La2-xAxMo2-y-y′ WyBy′O9-δ forming a crystalline structure, where A comprises Li, Na, K, Rb, Cs, Sc, Y, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, Be, Mg, Ca, Sr, Ba, Cu, Bi, Cd, Zn, Ag, Au, Pt, Ir, Rh, Ru, Pd, or combinations thereof; 0
摘要:
A process for producing a silicon-containing CMC article. The process entails depositing one or more coating layers on silicon carbide (SiC) fibers, drawing the coated SiC fibers through a slurry to produce slurry-coated fiber material, and then processing the slurry-coated SiC fiber material to form unidirectional prepreg tapes. The tapes are stacked and then fired to yield a porous preform. The porous preform is then further densified by infiltrating the porosity therein to yield a CMC article. Infiltration can be achieved by a series of polymer infiltration and pyrolysis (PIP) steps, by melt infiltration (MI) after filling the porosity in the preform with carbon or one or more refractory metal, by chemical vapor infiltration (CVI), or by a combination of these infiltration techniques.
摘要:
A coated substrate is provided that includes an environmental barrier coating on (e.g., directly on) a surface of a substrate (e.g., a ceramic matrix composite). The environmental barrier coating can include a barrier layer having a refractory material phase and a silicon-containing glass phase. The silicon-containing glass phase may be a continuous phase within the barrier layer (e.g., a breathable grain boundary of the barrier layer), or may be a plurality of discontinuous layers dispersed throughout the refractory material phase. The refractory material phase can include a rare earth silicate material having a rare earth component at a first atomic percent, while the silicon-containing glass phase comprises the rare earth component at a second atomic percent that is less than the first atomic percent. Methods are also provided for forming a barrier layer on a substrate.
摘要:
Environmental barrier coatings having CMAS mitigation capability for silicon-containing components. In one embodiment, the barrier coating includes a bond coat layer comprising aluminide-alumina TGO; and an outer layer selected from the group consisting of AeAl2O19, AeHfO3, AeZrO3, ZnAl2O4, MgAl2O4, Ln4Al2O9, Lna4Ga2O9, Ln3Al5O12, Ln3Ga5O12, Ga2O3, HfO2, and LnPO4.
摘要:
Methods and materials for forming in-situ features in a ceramic matrix composite component are described. The method of forming a ceramic matrix composite component with cooling features, comprises forming a preform tape, laying up said preform tape to a desired shape, placing a high-temperature resistant fugitive material insert of preselected geometry in the preform tape of the desired shape, compacting the preform tape of the desired shape, burning out the preform tape of the desired shape, melt infiltrating the desired shape, removing the high-temperature resistant insert to form the cooling features during one of the burning out or the melt infiltrating or following the burning out or the melt infiltrating.
摘要:
Methods of making components having calcium magnesium aluminosilicate (CMAS) mitigation capability including providing a component; applying an environmental barrier coating to the component, the environmental barrier coating having a separate CMAS mitigation layer including a CMAS mitigation composition selected from the group consisting of zinc aluminate spinel, alkaline earth zirconates, alkaline earth hafnates, rare earth gallates, beryl, and combinations thereof.