摘要:
The present invention relates to a field emission device (4000) comprising an anode (4080) and a cathode (4010), wherein the cathode includes carbon nanotubes (4020) which have been subjected to energy, plasma, chemical, or mechanical treatment. A method of treating the carbon nanotubes (4020) and for creating a field emission cathode (4010) is also disclosed. A field emission display device (4000) containing carbon nanotubes which have been subject to such treatment is further disclosed.
摘要:
A method of chemically modifying carbon nanotubes having a diameter less than one micron comprising: contacting the nanotubes with a peroxygen compound selected from the group consisting of organic peroxyacids, inorganic peroxoacids and organic hydroperoxides, or a salt thereof, under oxidation conditions and thereby producing modified carbon nanotubes. Oxidation of the nanotubes increases the degree of dispersion of aggregates of nanotubes and aids in the disassembling of such aggregates. The dispersed nanotubes are used to prepare rigid structures and can be used in electrodes and capacitors.
摘要:
An electrically conductive composite comprising a polyvinylidene fluoride polymer or copolymer and carbon nanotubes is provided. Preferably, carbon nanotubes may be present in the range of about 0.5-20% by weight of the composite. The composites are prepared by dissolving the polymer in a first solvent to form a polymer solution and then adding the carbon nanotubes into the solution. The solution is mixed using an energy source such as a sonicator or a Waring blender. A precipitating component is added to precipitate out a composite comprising the polymer and the nanotubes. The composite is isolated by filtering the solution and drying the composite. The composites are also prepared by mixing or dispersing carbon nanotubes in polymer emulsion using an energy source such as a Waring blender. The liquid in the mixture is then evaporated to obtain the composite comprising the polymer and the nanotubes.
摘要:
Improved fuel compositions containing carbon nanotubes in from 0.01 % to 30.0 % by weight of fuel have improved burn rate and other valuable properties. Improved lubricant compositions containing carbon nanotubes in from 0.01 to 20.0 % by weight of lubricant have improved viscosity and other valuable properties.
摘要:
A polymer composite composed of a polymerised mixture of functionalized I carbon nanotubes and monomer which chemically reacts with the functionalized nanotubes. The carbon nanotubes are functionalized by reacting with oxidising or other chemical media through chemical reactions or physical adsorption. The reacted surface carbons of the nanotubes are further functionalized with chemical moieties that react with the surface carbons and selected monomers. The functionalized nanotubes are first dispersed in an appropriate medium such as water, alcohol or a liquefied monomer and then the mixture is polymerised. The polymerisation results in polymer chains of increasing weight bound to the surface carbons of the nanotubes. The composite may consist of some polymer chains imbedded in the composite without attachment to the nanotubes. The resulting composite yields superior chemical, physical and electrical properties over polymer composites that are only physically mixed and without binding to the surface carbons of the nanotubes.
摘要:
Graphitic nanotubes, which includes tubular fullerenes (commonly called 'buckytubes') and fibrils, which are functionalized by chemical substitution or by adsorption of functional moieties. More specifically the invention relates to graphitic nanotubes which are uniformly or non-uniformly substituted with chemical moieties or upon which certain cyclic compounds are adsorbed and to complex structures comprised of such functionalized fibrils linked to one another. The invention also relates to methods of introducing functional groups onto the surface of such fibrils.
摘要:
Methods of oxidizing multiwalled carbon nanotubes are provided. The multiwalled carbon nanotubes are oxidized by contacting the carbon nanotubes with gas-phase oxidizing agents such as CO2, O2, steam, N2O, NO, NO2, O3, and ClO2. Near critical and supercritical water can also be used as oxidizing agents. The multiwalled carbon nanotubes oxidized according to methods of the invention can be used to prepare rigid porous structures which can be utilized to form electrodes for fabrication of improved electrochemical capacitors.