摘要:
In a known method for producing raised marking on a glass object, a suspension containing SiO2 particles is applied to a surface of the glass object as a pattern, and the pattern is compacted to form the marking. In order to enable a cost-effective production on this basis of an optically appealing and uniform marking on an object made of quartz glass, which is also suited for applications at high temperature or in a contaminant-sensitive environment - such as in solar cell and semiconductor production - it is proposed according to the invention that a binder-free suspension be used to create a marking on a quartz glass object, said suspension containing a dispersion fluid and amorphous SiO2 particles having particle sizes of up to a maximum of 500 μm, of which are between 0.2% by weight and 15% by weight SiO2 nanoparticles having particle sizes of less than 100 nm, and the solids content thereof - that is the weight proportion of the SiO2 particles and of the SiO2 nanoparticles together - is in the range between 60 and 90%.
摘要:
A known SiO2 slurry for the production of quartz glass contains a dispersion liquid and amorphous SiO2 particles with particle sizes to a maximum of 500µm, wherein the largest volume fraction is composed of SiO2 particles with particle sizes in the range 1µm - 60µm, as well as SiO2 nanoparticles with particle sizes less than 100nm in the range 0.2 - 15% volume by weight (of the entire solids content). In order to prepare such a slurry for use, and to optimize the flow behavior of such a slurry with regard to later processing by dressing or pouring the slurry mass, and with regard to later drying and sintering without cracks, the invention suggests a slurry with SiO2 particles with a multimodal distribution of particle sizes, with a first maximum of the sizes distribution in the range 1µm - 3µm and a second maximum in the range 5µm - 50µm, and a solids content (percentage by weight of the SiO2 particles and the SiO2 nanoparticles together) in the range 83% - 90%.
摘要:
The invention starts from a known component of quartz glass for use in semiconductor manufacture, which component at least in a near-surface region shows a co-doping of a first dopant and of a second oxidic dopant, said second dopant containing one or more rare-earth metals in a concentration of 0.1-3% by wt. each (based on the total mass of SiO2 and dopant). Starting from this, to provide a quartz glass component for use in semiconductor manufacture in an environment with etching action, which component is distinguished by both high purity and high resistance to dry etching and avoids known drawbacks caused by co-doping with aluminum oxide, it is suggested according to the invention that the first dopant should be nitrogen and that the mean content of metastable hydroxyl groups of the quartz glass is less than 30 wtppm.
摘要:
Methods for producing a quartz glass component with reflector layer are known in which a reflector layer composed of quartz glass acting as a diffuse reflector is produced on at least part of the surface of a substrate body composed of quartz glass. In order, taking this as a departure point, to specify a method which enables cost-effective and reproducible production of uniform SiO2 reflector layers on quartz glass components, it is proposed according to the invention that the reflector layer is produced by thermal spraying by means of SiO2 particles being fed to an energy carrier, being incipiently melted or melted by means of said energy carrier and being deposited on the substrate body. In the case of a quartz glass component obtained according to the method, the SiO2 reflector layer is formed as a layer which is produced by thermal spraying and has an opaque effect and which is distinguished by freedom from cracks and uniformity.
摘要:
The invention starts from a known component of quartz glass for use in semiconductor manufacture, which component at least in a near-surface region shows a co-doping of a first dopant and of a second oxidic dopant, said second dopant containing one or more rare-earth metals in a concentration of 0.1-3% by wt. each (based on the total mass of SiO2 and dopant). Starting from this, to provide a quartz glass component for use in semiconductor manufacture in an environment with etching action, which component is distinguished by both high purity and high resistance to dry etching and avoids known drawbacks caused by co-doping with aluminum oxide, it is suggested according to the invention that the first dopant should be nitrogen and that the mean content of metastable hydroxyl groups of the quartz glass is less than 30 wtppm.