Abstract:
Provided is a work machine hydraulic control system capable of detecting abnormality in a pump output power switching device independently of the abnormality state of the pump output power switching device. A hydraulic control system of a hydraulic excavator is equipped with an accumulator 21 connected to a hydraulic line 25A between a pilot pump 17 and a pilot valve 20, an unloading valve 27 that is a pump output power switching device, a pressure sensor 29 detecting the pressure of the hydraulic fluid supplied to the pilot valve 20, and a controller 30 having a pump output power control section 31 switching the unloading valve 27 in accordance with the pressure detected by the pressure sensor 29. The controller 30 further has an abnormality determination section 32 that computes a command continuation time in a state in which a command output to the unloading valve 27 is not changed. In the case where this command continuation time is not less than a predetermined value, it determines that the unloading valve 27 is abnormal, and outputs the determination result.
Abstract:
A hydraulic drive system 100A for a work machine includes: a boom cylinder 4; an arm cylinder 8; a hydraulic pump device 51; a control valve 5; a regenerative device 61; a first operation device 41; a second operation device 42; a sensor device 71; and a controller 27. The sensor device 71 includes at least one of pressure sensors 23, 24, 25, and 26. The controller 27 includes an abnormality detection part 142 and a first control part. The abnormality detection part 142 determines whether or not the sensor device 71 is abnormal. If the sensor device 71 is abnormal, the first control part controls the regenerative device 61 such that the hydraulic fluid returning from the boom cylinder 4 is not supplied to the arm cylinder 8 even if the values measured by the sensor device 71 satisfy regenerative conditions.
Abstract:
Provided is a hydraulic drive system for a work machine configured with a single solenoid proportional valve for a regeneration circuit, wherein substantially the same actuator speed can be secured irrespective of whether or not hydraulic fluid discharged from a hydraulic actuator is regenerated for driving of another hydraulic actuator. The hydraulic drive system includes: a regeneration line that connects a bottom-side hydraulic chamber of a hydraulic cylinder 4 to a portion between a hydraulic pump device 50 and a second hydraulic actuator 8, and a regeneration flow rate adjustment device that supplies, at an adjusted flow rate, at least part of the discharged hydraulic fluid to a portion between the hydraulic pump device 50 and the second hydraulic actuator; a discharge flow rate adjustment device that discharges, at an adjusted flow rate, the discharged hydraulic fluid to a tank; one electric drive device 22 that simultaneously controls the regeneration flow rate adjustment device and the discharge flow rate adjustment device; and a control unit 27 that outputs a control command to the electric drive device in such a manner that falling speed of a first driven body does not vary significantly, irrespective of the magnitude of the regeneration flow rate caused by the regeneration flow rate adjustment device.
Abstract:
Disclosed is a motive power regeneration system for a working machine. The motive power regeneration apparatus includes a regeneration circuit (53) that is connected to a hydraulic line (51) through which a returning fluid of a boom cylinder (3A) is distributed during a boom lowering operation and provided with a hydraulic motor (24) connected to a generator (25), a flow regulating circuit (54) that is connected to the hydraulic line (51) and provided with a control valve (5A), an inverter (26) that controls the flow rate on the regeneration circuit (53) in accordance with a first flow rate setting (Q2) which varies with the operation amount of an operating apparatus (4A), and a control valve (5A) and a proportional valve (27) that control the flow rate on the flow regulating circuit (54) in accordance with a second flow rate setting (Q1) which varies with the operation amount of the operating apparatus (4A). Therefore, the motive power regeneration apparatus is capable of making an operator constantly feel comfortable with machine operations.
Abstract:
Provided is a work machine capable of regenerating a return hydraulic fluid from a hydraulic actuator while preventing a drag loss of a regeneration hydraulic motor and a hydraulic pump from increasing and preventing the regeneration efficiency of the regeneration hydraulic motor from decreasing. A controller 100 computes a required regeneration hydraulic motor revolution speed from a displacement of a regeneration hydraulic motor 13 and a regeneration flow rate of the regeneration hydraulic motor, computes a required first hydraulic pump revolution speed from a displacement of a first hydraulic pump 15 and a target assist flow rate of the first hydraulic pump, and selects a greater one of the required regeneration hydraulic motor revolution speed and the required first hydraulic pump revolution speed as a target revolution speed of an electric motor 14.
Abstract:
A controller (45) is provided with an elapse time measuring section (47A) that measures an elapse time (tx) elapsed since an initial use of an accumulator (29) based upon a reset signal from a reset switch (44), a number-of-operations measuring section (47B) that measures a number of operations of the accumulator (29), that is, a number (N) of boom lowering operations after a reset, based upon a detection signal from an accumulator side pressure sensor (39), a gas permeation amount estimating section (47C) that estimates an estimation gas permeation amount (Qloss) of the accumulator (29), a sealed gas pressure estimating section (47D) that finds an estimation sealed gas pressure (Pgs) of a gas chamber (29B) of the accumulator (29), and an accumulator degradation determining section (47E) that determines a degradation condition of the accumulator (29) and outputs the determination result.
Abstract:
The invention provides a construction machine in which the load torque at the time of engine start-up can be reduced even when the engine stops against the will of the operator. A hydraulic excavator includes a control device (35) having a pump displacement control section (37) and an unload control section (38). The pump displacement control section (37) makes the displacement of a hydraulic pump (16) variable to a minimum displacement by controlling a regulator device (20) when the speed of an engine (14) detected by a speed sensor (41) becomes equal to or less than a preset low speed N3 at the time of driving of the engine (14). The unload control section (40) controls an unloading valve (24) to the open position at the time of start-up of the engine (14).
Abstract:
A hydraulic fluid energy regeneration apparatus of a work machine includes: a regeneration hydraulic motor driven by a return hydraulic fluid; a first hydraulic pump mechanically connected to the regeneration hydraulic motor; a second hydraulic pump that delivers a hydraulic fluid for driving a hydraulic actuator; a confluence line that causes the hydraulic fluid delivered from the first hydraulic pump to join the hydraulic fluid delivered from the second hydraulic pump; a first adjuster configured to adjust the flow rate of the hydraulic fluid of the first hydraulic pump; and a second adjuster configured to adjust the delivery flow rate of the second hydraulic pump. A control device includes: a first calculation section configured to calculate a non-confluence time pump flow rate in the case where the hydraulic actuator is driven solely by the second hydraulic pump and calculate a control command output to the first adjuster such that the flow rate of the hydraulic fluid from the first hydraulic pump is equal to or lower than the non-confluence time pump flow rate; and a second calculation section configured to calculate a target pump flow rate by subtracting from the non-confluence time pump flow rate the flow rate of the hydraulic fluid from the first hydraulic pump and calculate a control command output to the second adjuster such that the target pump flow rate is attained.
Abstract:
Provided is a work machine capable of achieving both low fuel consumption and ensuring of workability. The work machine is configured to, in a state where an output of an engine or hydraulic pump has increased to an increase threshold (S12: Yes) with the rotational speed being at a first rotational speed (S11: Yes), raise the rotational speed from the first rotational speed to a second rotational speed (S13); in a process of raising the rotational speed to the second rotational speed, output, to a regulator, a signal instructing reduction in the discharge rate (S14) so as to keep the output of the engine or hydraulic pump constant; and after the rotational speed has reached the second rotational speed, output, to the regulator, a signal instructing increase in the discharge rate (S16) so as to make the output of the engine or hydraulic pump have a value corresponding to a request load.