Abstract:
A sensing apparatus for determining the pressure of a fluid includes first and second support members. The first and second support members are configured to define at least one sealed chamber. A flexible diaphragm is disposed between the first and second support members. The diaphragm includes first and second opposing surfaces. The first opposing surface is in fluid communication with a first fluid-flow circuit, and the second opposing surface is in fluid communication with a second fluid-flow circuit. A first electronic circuit is disposed within the at least one chamber and coupled to the diaphragm for sensing a first differential pressure associated with the first and second flow circuits. The first electronic circuit is configured to produce at least one electrical signal proportional to a magnitude of the first differential pressure.
Abstract:
A pressure sensor device for a modular pressure sensor package is provided, comprising a substrate having a pressure port that extends through the substrate from a first side of the substrate to a second side of the substrate. A pressure sensor die is attached to the first side of the substrate, forming a seal over the pressure port on the first side of the substrate. A cover is attached to the first side of the substrate over the pressure sensor die, forming a sealed cavity wherein the pressure sensor die is located within the cavity. The device also comprises a plurality of electrical connectors mounted to the substrate external to the cavity, the plurality of electrical connectors electrically coupled to the pressure sensor die. Further, the substrate includes at least one mounting element configured to secure a pressure port interface to the second side of the substrate in a position around the pressure port.
Abstract:
In one embodiment a pressure sensor (100) is provided. The pressure sensor (100) includes a housing (104) having an input port (102) configured to allow a media to enter the housing. A support (122) is mounted within the housing, the support defining a first aperture (112) extending therethrough. A stress isolation member (110) is mounted within the first aperture of the support, the stress isolation member defining a second aperture (108) extending therethrough, wherein the stress isolation member is composed of silicon. A sensor die (106) is bonded to the stress isolation member. The sensor die includes a silicon substrate having an insulator layer on a first side (105) of the silicon substrate; and sensing circuitry disposed in the insulator layer on the first side, wherein a second side of the silicon substrate is exposed to the second aperture of the stress isolation member and the second side is reverse of the first side.
Abstract:
A sensing apparatus for determining the pressure of a fluid includes first and second support members. The first and second support members are configured to define at least one sealed chamber. A flexible diaphragm is disposed between the first and second support members. The diaphragm includes first and second opposing surfaces. The first opposing surface is in fluid communication with a first fluid-flow circuit, and the second opposing surface is in fluid communication with a second fluid-flow circuit. A first electronic circuit is disposed within the at least one chamber and coupled to the diaphragm for sensing a first differential pressure associated with the first and second flow circuits. The first electronic circuit is configured to produce at least one electrical signal proportional to a magnitude of the first differential pressure.
Abstract:
System and methods for silicon on insulator MEMS pressure sensors are provided. In one embodiment, a method comprises: applying a doping source to a silicon-on-insulator (SOI) silicon wafer having a sensor layer and an insulating layer comprising SiO 2 material; doping the silicon wafer with Boron atoms from the doping source while controlling an injection energy of the doping to achieve a top-heavy ion penetration profile; and applying a heat source to diffuse the Boron atoms throughout the sensor layer of the SOI silicon wafer.
Abstract:
A pressure sensor device for a modular pressure sensor package is provided, comprising a substrate having a pressure port that extends through the substrate from a first side of the substrate to a second side of the substrate. A pressure sensor die is attached to the first side of the substrate, forming a seal over the pressure port on the first side of the substrate. A cover is attached to the first side of the substrate over the pressure sensor die, forming a sealed cavity wherein the pressure sensor die is located within the cavity. The device also comprises a plurality of electrical connectors mounted to the substrate external to the cavity, the plurality of electrical connectors electrically coupled to the pressure sensor die. Further, the substrate includes at least one mounting element configured to secure a pressure port interface to the second side of the substrate in a position around the pressure port.
Abstract:
System and methods for silicon on insulator MEMS pressure sensors are provided. In one embodiment, a method comprises: applying a doping source to a silicon-on-insulator (SOI) silicon wafer having a sensor layer and an insulating layer comprising SiO 2 material; doping the silicon wafer with Boron atoms from the doping source while controlling an injection energy of the doping to achieve a top-heavy ion penetration profile; and applying a heat source to diffuse the Boron atoms throughout the sensor layer of the SOI silicon wafer.