摘要:
Embodiments of a machine-type communication (MTC) User Equipment (UE) and methods for configuring a MTC UE using an evolved Node B (eNB) are generally described herein. A method for configuring a UE for communication performed by circuitry of an evolved Node B (eNB) may include broadcasting, from the eNB, a physical downlink control channel (PDCCH) transmission on a licensed band, transmitting, from the eNB to the UE, a physical broadcast channel (PBCH) transmission multiplexed with a machine-type communication (MTC) PBCH (M-PBCH) transmission, the M-PBCH transmission including a MTC master information block (M-MIB) in a MTC region of the licensed band, wherein the MTC region includes a subset of frequencies of the licensed band, and transmitting, from the eNB to the UE, a first data transmission on the MTC region in a downlink.
摘要:
Disclosed in some examples are methods, systems, and machine readable mediums which reuse existing LTE functionality to rapidly signal UEs on the availability of a LTE-U cell. Using these techniques the on/off operation can be in the order of a few milliseconds (ms). Several techniques are disclosed herein, including use of component carrier (CC) specific Discontinuous Reception (DRX) signaling, PDCCH signaling, DL assignment based signaling, Physical Hybrid Automatic Repeat Request Indicator Channel (PHICH) signaling, Beacon signaling, and the like.
摘要:
In embodiments, apparatuses, methods, and storage media are described for determining, based on the DL-reference UL/DL subframe configuration, a DL hybrid automatic repeat request (HARQ) timing for an UL transmission of HARQ feedback associated with a DL transmission on Physical Downlink Shared Channel (PDSCH). Other aspects may relate to identifying subframes in a radio frame on which a UE may receive a Physical Downlink Control Channel (PDCCH) or enhanced PDCCH (ePDCCH) transmission. Specifically, the UE may receive multiple indications of uplink/downlink (UL/DL) subframe configurations and identify one or more subframes in which the UE may receive the PDCCH or ePDCCH transmission. The UE may then monitor one or more of the identified subframes and base discontinuous reception (DRX) timer functionality on one or more of the identified subframes.
摘要:
A technology for an enhanced node B (eNode B) in a cellular network that is operable to determine downtilt using full dimensional (FD) multiple-input multiple-output (MIMO). A plurality of orthogonal frequency division multiple access (OFDMA) signals can be transmitted, wherein each transmitted OFDMA signal is transmitted with a selected downtilt angle from a two dimensional antenna array of the eNode B. Reference signal received power (RSRP) feedback information can be received from a UE for each of transmitted OFDMA signals at the selected downtilt angles. Received signal strength indicator (RSSI) feedback information can be received from the UE. A reference signal received quality (RSRQ) can be calculated for each of the selected antennas angles using the RSRP feedback information and the RSSI feedback information. A downtilt angle can be selected for transmitting data from the eNode B with a highest signal to interference plus noise ratio (SINR).
摘要:
An eNodeB (eNB), user equipment (UE) and method for operating using a reduced data transmission bandwidth are generally described. The UE may receive downlink control information (DCI) that provides a resource allocation (RA) of a reduced physical resource block (PRBmin) of less than 1 PRB for communications in a PRB of a subframe. Whether the RA is localized or distributed may be predefined, configured via system information block or Radio Resource Control signaling, or indicated in the DCI format. The DCI format may specify the resources within the PRB allocated to the UE through a subcarrier block index and total number of subcarrier blocks or a bitmap corresponding to a unique block of subcarriers or block index. An order in a list of cell Radio Network Temporary Identifiers (RNTIs) may be used with a common RNTI to derive the reduced RA from a 1 PRB RA.
摘要:
Methods, systems, devices, and apparatus including evolved node B (eNB) or user equipment (UE) for machine-type communications (MTC) with narrowband deployment are described. One embodiment includes control circuitry configured to determine a super-frame structure, where the super-frame structure is set, at least in part, on a bandwidth of the narrowband deployment, with a plurality of downlink physical channels areas multiplexed as part of a first downlink super-frame of the super-frame structure. Such an embodiment may include communication circuitry configured to transmit the first downlink super-frame comprising the plurality of multiplexed downlink physical channels, receive a plurality of uplink physical channels, and receive, in response to transmission of the first downlink super-frame, a hybrid automatic repeat request (HARQ) acknowledgement (ACK) or negative acknowledgement (NACK).
摘要:
An enhanced NodeB (eNB), user equipment (UE) and communication methods therebetween using an unlicensed channel of an unlicensed band are generally described. The eNB measures an interference power level (IPL) of the unlicensed channel at the eNB and determine a transmit power level (TPL) for a downlink transmission based on the IPL, the TPL decreasing with increasing IPL. Feedback including unlicensed channel conditions measured by the UE is used by the eNB to determine the UE-eNB proximity. The eNB determines whether to transmit the downlink transmission to the UE based on the IPL and the proximity; as the IPL increases, the eNB services increasingly proximate UEs until, when the IPL exceeds a predetermined threshold, the eNB does not service any UE using the unlicensed channel. The eNB schedules and transmits the downlink transmission to the UE using the transmit power level.
摘要:
Methods and apparatuses for communicating in a wireless network include a signal processor for combining a plurality of signals transmitted by respective eNBs by processing the signals as multipath instances of a single signal.
摘要:
Embodiments allow selection of a Discovery signal (DS) used to identify an eNB to a UE receiving the DS. The DS allows the UE to ascertain the existence and/or cell identifier of the eNB. DS comprise a plurality of other signals such as a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), a Cell Specific Reference Signal (CRS) and/or a Channel State Information Reference Signal (CSI-RS). A DS occasion comprises a number of subframes where the selected signals that comprise the DS are transmitted. The signals selected for the DS, their characteristics and properties allow a UE to decode the cell identifier. The DS occasion occurs with a designated periodicity.
摘要:
Methods, systems, and devices for modulation and coding scheme selection and configuration. A mobile communication device includes a table component, a table selection component, and a communication component. The table component is configured to maintain two or more tables each having entries for a plurality of available modulation schemes. The two or more tables include a default table and a secondary table. The default table and the secondary table have a matching number of entries, and the secondary table includes an entry corresponding to a 256-QAM scheme. The table selection component is configured to select a selected table from one of the default table and the secondary table. The communication component is configured to receive and process a communication from a base station based on a modulation and coding scheme of the selected table.