Abstract:
Lead- free solder alloys and solder joints thereof with improved drop impact resistance are disclosed. In one particular exemplary embodiment, the lead-free solder alloys preferably comprise 0.0-4.0 wt . % of Ag, 0.01-1.5 wt . % of Cu, at least one of the following additives: Mn in an amount of 0.001-1.0 wt. %, Ce in an amount of 0.001-0.8 wt.%, Y in an amount of 0.001-1.0 wt.%, Ti in an amount of 0.001-0.8 wt.%, and Bi in an amount of 0.01-1.0 wt.%, and the remainder of Sn.
Abstract:
A Sn-Ag-Cu-based lead-free solder alloy and solder joints thereof with superior drop shock reliability are disclosed. The solder comprises between greater than 0 wt.% and less than or equal to about 1.5 wt.% Ag; between greater than or equal to about 0.7 wt.% and less than or equal to about 2.0 wt.% Cu; between greater than or equal to about 0.001 and less than or equal to about 0.2 wt.% Mn; and a remainder of Sn.
Abstract:
A SnAgCuSb-based Pb-free solder alloy is disclosed. The disclosed solder alloy is particularly suitable for, but not limited to, producing solder joints, in the form of solder preforms, solder balls, solder powder, or solder paste (a mixture of solder powder and flux), for harsh environment electronics. An additive selected from 0.1-2.5 wt.% of Bi and/or 0.1-4.5 wt.% of In may be included in the solder alloy.
Abstract:
A lead-free solder alloy composition comprising tin, silver and copper, and a process for reflow soldering for minimizing tombstoning frequency are disclosed. In one particular exemplary embodiment, the lead-free Sn—Ag—Cu solder alloys for minimizing the tombstoning effect of the present disclosure display high mass fraction during melting and prolonged melting as shown by a widened DSC peaks, that allows for a balanced surface tension on both ends of the chip component to develop. In accordance with further aspects of this exemplary embodiment, the alloys display a mass fraction of solid during melting greater than 20% and a DSC peak width greater than 8° C. using a 5° C./min scan rate. In accordance with further aspects of this exemplary embodiment, the alloy comprises on a weight basis Ag 1-4.5%, Cu 0.3-1% balanced with Sn.
Abstract:
A SnAgCuSb-based Pb-free solder alloy is disclosed. The disclosed solder alloy is particularly suitable for, but not limited to, producing solder joints, in the form of solder preforms, solder balls, solder powder, or solder paste (a mixture of solder powder and flux), for harsh environment electronics. An additive selected from 0.1-2.5 wt.% of Bi and/or 0.1-4.5 wt.% of In may be included in the solder alloy.
Abstract:
A SnAgCuSb-based Pb-free solder alloy is disclosed. The disclosed solder alloy is particularly suitable for, but not limited to, producing solder joints, in the form of solder preforms, solder balls, solder powder, or solder paste (a mixture of solder powder and flux), for harsh environment electronics. An additive selected from 0.1-2.5 wt.% of Bi and/or 0.1-4.5 wt.% of In may be included in the solder alloy.
Abstract:
Methods of forming solder bumps or joints using a radiation curable, thermal curable solder flux, or dual curable solder flux are disclosed. The method includes applying a liquid solder flux 130 that is radiation curable or thermal curable to a substrate 110 such that the solder flux covers contact padsl20 on the substrate; placing solder balls 140 on the contacts pads covered with the radiation curable or thermal curable solder flux; heating the substrate to join the solder balls to the contact pads, thereby forming solder bumps or solder joints 150; and curing the liquid solder flux by applying radiation or heat to the substrate, thereby forming a solid film 160. The solder flux includes radiation curable, thermally curable, or dual curable materials that aid formation of solder bumps or joints before the solder flux is cured; and are curable to form a solid material by the application of radiation or heat.