摘要:
The subject invention provides a stable mass production method of carbon nano structure at low cost immune to variation of particle diameter of the catalyst microparticle in the catalyst material. The subject invention also provides a production device used for the method, and a new carbon nano structure having a conformation suitable for the mass production. The production method of carbon nano structure comprising fluidizing a material gas and catalyst microparticles in the reactor so that the material gas and the catalyst microparticles are brought into contact with each other, wherein said catalyst microparticles are suspended by the instantaneous spraying of the high-pressure gas, and then the suspension effect of the catalyst microparticles is stopped so that the catalyst microparticles naturally fall. The particle diameter of the catalyst microparticles is thus selected. With this arrangement, only the selected catalyst microparticles with the desired diameter are supplied to the reactor. Since this arrangement is immune to influence of variation in particle diameter of catalyst microparticles contained in the catalyst material, it achieves stable mass production of carbon nano structure at low cost.
摘要:
A material gas and a catalyst are introduced through a material supplying tube path (4) and a catalyst supplying tube path (3) together with a carrier gas into a reactor (1) equipped on its outer periphery with a heat applicator (12) for thermally decomposing the material gas. The reactor (1) has a convention regulator (61) fitted to the discharge end of the catalyst supplying tube path (3). The convection regulator (61) covers an edge side of the reactor (1) to regulate gas flow in the reactor so that the flow does not reach the edge side. Due to this, a convection state can be efficiently produced in a reaction region. Consequently, it becomes possible to prevent contamination defect caused by accumulation/adherence of concretion of catalyst, which was generated by aggregation of cooled catalyst in the low-temperature region of the reactor (1) and a decomposition product of the material gas. Thus the efficiency of carbon nanostructure production can be improved.
摘要:
A catalyst for preparing a carbon nanocoil which comprises a carbide catalyst comprising the elements of (transition metal element, In, C) or (transition metal element, Sn, C), or comprises a metal catalyst comprising the elements of (Fe, Al, Sn) or (Fe, Cr, Sn). The transition metal element of the carbide catalyst is preferably Fe, Co or Ni. More preferable catalysts include Fe3InC0.5, Fe3InC0.5Snw and Fe3SnC. A catalyst comprising a porous carrier and the above catalyst carried thereon is capable of controlling the diameters of the wire and the coil of the resulting carbon nanocoil. The above catalyst allows the preparation of a carbon nanocoil with high efficiency, and it has been found through taking the catalyst nucleus attached on the apex of a carbon nanocoil as a true catalyst for preparing the carbon nanocoil and determining the structure of the catalyst nucleus.
摘要:
An aggregate of carbon-based fine structures in which a plurality of carbon-based fine structures are collected, wherein respective carbon-based fine structures are oriented in the same direction. The above aggregate of carbon-based fine structures is an aggregate of a plurality of carbon-based fine structures in a state they are pulled by one another with strong interaction, and has such a length that allows the improvement of the handeability and workability thereof.
摘要:
An aggregate of carbon-based fine structures in which a plurality of carbon-based fine structures are collected, wherein respective carbon-based fine structures are oriented in the same direction. The above aggregate of carbon-based fine structures is an aggregate of a plurality of carbon-based fine structures in a state they are pulled by one another with strong interaction, and has such a length that allows the improvement of the handeability and workability thereof.
摘要:
A method for synthesizing carbon nanocoils with high efficiency, by determining the structure of carbon nuclei that have been attached to the ends of carbon nanocoils and thus specifying a true catalyst for synthesizing carbon nanocoils is implemented. The catalyst for synthesizing carbon nanocoils according to the present invention is a carbide catalyst that contains at least elements (a transition metal element, In, C) or (a transition metal element, Sn, C), and in particular, it is preferable for the transition metal element to be Fe, Co or Ni. In addition to this carbide catalyst, a metal catalyst of (Fe, Al, Sn) and (Fe, Cr, Sn) are effective. From among these, catalysts such as Fe 3 InC 0.5 , Fe 3 InC 0.5 Snw and Fe 3 SnC are particularly preferable. The wire diameter and the coil diameter can be controlled by using a catalyst where any of these catalysts is carried by a porous carrier.
摘要:
Developed is high-efficiency synthesis method and apparatus capable of promoting the initial growth of carbon nanostructure by eliminating the initial fluctuation time and rising time in raw gas flow quantity. A high-efficiency synthesis method of carbon nanostructure according to the present invention is a high-efficiency synthesis method of carbon nanostructure, the method comprising: bringing raw material gas and a catalyst into contact with each other under reactive conditions so as to produce a carbon nanostructure, wherein: the initiation of contact of the raw material gas with the catalyst is carried out instantaneously. Reaction conditions such as temperature and raw material gas concentration are set so as to meet those for catalyst growth, and under the reaction conditions, the initiation of contact of raw material gas G with catalyst 6 is carried out instantaneously. Consequently, the initial growth of carbon nanostructure is positively carried out, and the height growth and thickness growth thereof can be effected in high efficiency. Further, high-density growth and short-time high-speed growth can be realized. The catalyst includes any forms of catalyst such as catalyst substrate, catalyst structure, catalyst powders and catalyst pellet. It is especially preferred to employ a system wherein the feed and interruption of the raw material gas G are intermittently controlled by means of an electromagnetic three-way valve 24.
摘要:
It is the purpose of this invention to present a process for producing carbon nanostructure in which the mechanism of continuous carbon nanostructure growth can be optimized and a high-quality carbon nanostructure can be produced, a catalyst for carbon nanostructure growth which is for use in the production, a raw-material gas and a carrier gas for producing the same, and an apparatus for producing the same. The process for carbon nanostructure production, in which the length of the nanostructure can be continuously controlled comprises feeding a carrier gas and a raw-material gas to a reaction chamber (4) to produce a carbon nanostructure (2) with a catalytic structure (6), wherein the concentrations of oxidation gases contained in the carrier gas and raw-material gas, such as oxygen and water (in the case of raw-material acetylene gas, minor ingredients such as DMF and acetone, which are solvents), are regulated to a moderate value. Thus, a carbon nanostructure of good quality can be produced at a high efficiency.
摘要:
Disclosed is a CNT nanodevice using small-diameter CNT having a monolayer, two-layer or other structure produced by virtue of strong CNT fastening treatment under high vacuum of an environment having a very low residual hydrocarbon content. Also disclosed are a CNT supporting body such as a CNT holding body necessary for the production process of the CNT nanodevice, and a process for producing the CNT supporting body. A supporting portion (18a) is provided on a supporting body (18). A base end portion (15a) in CNT (15) is transferred to the supporting portion (18a), and electron beams (17) or ion beams are applied toward the base end portion (15a) in CNT (15). A carbon material layer (19) covering the base end portion (15a) and the supporting portion (18a) is converted to an amorphous carbon layer and a graphite layer by the application of the beams. CNT (15) is fixed to the supporting body (18) by the graphite layer to produce the CNT supporting body. The application of the beams is carried out under high vacuum within TEM.