Abstract:
An imaging system (100) includes a radiation sensitive detector array (110). The detector array includes at least two scintillator array layers (116). The detector array further includes at least two corresponding photosensor array layers (114). At least one of the at least two photosensor array layers is located between the at least two scintillator array layers in a direction of incoming radiation. The at least one of the at least two photosensor array layers has a thickness that is less than thirty microns.
Abstract:
An imaging system detector array (112) includes a detector tile (116). The detector tile includes a photosensor array (202), including a plurality of photosensor pixels (204). The detector tile further includes a scintillator array (212) optically coupled to the photosensor array. The detector tile further includes an electronics layer or ASIC on a substrate (214) that is electrically coupled to the photosensor array. The electronics layer includes a plurality of individual and divisible processing regions (302). Each processing region including a predetermined number of channels corresponding to a sub-set of the plurality of photosensor pixels. The processing regions are in electrical communication with each other. Each processing region includes its own electrical reference and bias circuitry (802, 804).
Abstract:
An imaging system detector array (112) includes a detector tile (116). The detector tile includes a photosensor array (202), including a plurality of photosensor pixels (204). The detector tile further includes a scintillator array (212) optically coupled to the photosensor array. The detector tile further includes an electronics layer or ASIC on a substrate (214) that is electrically coupled to the photosensor array. The electronics layer includes a plurality of individual and divisible processing regions (302). Each processing region including a predetermined number of channels corresponding to a sub-set of the plurality of photosensor pixels. The processing regions are in electrical communication with each other. Each processing region includes its own electrical reference and bias circuitry (802, 804).
Abstract:
The present invention generally relates to a radiation detector element wherein a photodiode is transversely fixed to a detector element substrate through at least one connection comprising two fused solder balls, wherein a first of the two fused solder balls contacts the photodiode and a second of the two fused solder balls (contacts the detector element substrate. The invention further relates to a method of transversally attaching two substrates, in particular constructing the above-mentioned radiation detector element. It also relates to an imaging system comprising at least one radiation detector element.
Abstract:
A sensor array module (100) for sensing radiation is provided, comprising a flexible substrate (102) including a surface (112), a plurality of sensing elements (103) directly provided on a sensing area (104) of the surface of the flexible substrate, a plurality of conductive paths (113) comprised on the substrate, each conductive path (113) providing a direct electric connection between each sensing element (103) and one zone (126) of the substrate adapted for connecting one input of a readout unit (106). Further, a detector tile and a detector comprising such sensor array module is provided, as well as a method of manufacture.
Abstract:
An imaging system (100) includes a radiation sensitive detector array (110). The detector array includes at least two scintillator array layers (116). The detector array further includes at least two corresponding photosensor array layers (114). At least one of the at least two photosensor array layers is located between the at least two scintillator array layers in a direction of incoming radiation. The at least one of the at least two photosensor array layers has a thickness that is less than thirty microns.