摘要:
Imaging systems and methods are provided, which involve acquiring static volume data using a first imaging technique; segmenting the static volume data to generate a static segmentation; annotating the static segmentation with at least one annotation; acquiring initial dynamic volume data using a second imaging technique different to the first imaging technique; segmenting the initial dynamic volume data to generate a plurality of dynamic segmentations; comparing the static segmentation to each one of the plurality of dynamic segmentations and determining, using the comparisons, a single dynamic segmentation that most closely corresponds to the static segmentation; storing the corresponding single dynamic segmentation in the memory as a reference segmentation; acquiring subsequent dynamic volume data; segmenting the subsequent dynamic volume data to generate at least one subsequent dynamic segmentation; determining a difference between the reference segmentation and the subsequent dynamic segmentation; updating the at least one annotation using the determined difference; and displaying the at least one updated annotation together with the subsequent dynamic volume data.
摘要:
The invention addresses the problem of correctly positioning a catheter and reducing radiation doses. It relates to an X-ray imaging system (1) for a robotic catheter, comprising said catheter (3), and a processing unit (5) for receiving X-ray images of a patient environment (15). By being adapted to receive one or more auxiliary information items and using said information for determining the catheter position, the processing unit does not entirely have to rely on a large number of scanned image data, thus helping to reduce radiation while correctly delivering the catheter position as a function of as few as a single image, preferably 2D, and said one auxiliary information items. Further, said processing unit allows for at least one of rendering an image and provide said image to a visualization device (21), and providing feedback, e.g. steering commands, to said robotic catheter.
摘要:
The invention relates to a navigation system for navigating an interventional device (11) like a catheter and an interventional system comprising the navigation system. A position and shape determining unit (13) determines and stores a first position and shape of the interventional device within a living being (9) during a first interventional procedure like a first chemoembolization session and determines a second position and shape of an interventional device within the living being during a subsequent second interventional procedure like a second chemoembolization session. During the second interventional procedure the interventional device is navigated based on the stored first position and shape and based on the second position and shape. This allows considering during the second interventional procedure the path of the interventional device used during the first interventional procedure. In particular, this allows navigating the interventional device along the same path during the first and second interventional procedures.
摘要:
The invention relates to an imaging apparatus for imaging a first object (10) like a tip of a catheter within a second object being, for instance, a vascular structure of a person. A three-dimensional representation of the second object including a representation of a surface (23) of the second object and the position of the first object relative to the position of the second object are provided, and a projection (22) of the first object onto the representation of the surface of the second object is determined and shown to a user like a physician on a display. The three-dimensional spatial relationship between the first object and the second object is thereby shown in a way that is very native for the user, i.e. a visualization can be provided, which allows the user to easily and accurately grasp the three-dimensional spatial relationship between the first object and the second object.
摘要:
A method for reconstructing 3D shape of a longitudinal device using an optical fiber with optical shape sensing (OSS) properties, e.g. Bragg gratings. By attaching the optical fiber to the longitudinal device, such that the optical fiber follows its 3D shape upon bending, known OSS techniques can be applied to reconstruct 3D shape of the optical fiber, and thus also the longitudinal device, e.g. a medical catheter. E.g. the optical fiber, e.g. placed in a guide wire, can be inserted in a lumen of the longitudinal device. Hereby, one OSS system can be used for 3D tracking a plurality of non-shape sensed catheters or other longitudinal devices. In case the longitudinal device is longer than the optical fiber, the position and shape of the remaining part of the longitudinal device may be estimated and visualized to a user, e.g. based on a known length of the longitudinal device, and based on an orientation of an end point of the optical fiber, e.g. using knowledge about the stiffness or other properties of the longitudinal device.
摘要:
An optical shape sensing hub includes a longitudinal body (210) forming a cavity configured to receive two or more optical shape sensing (OSS) enabled instruments. One or more mechanical features (212, 214) are disposed within the cavity or on the longitudinal body to maintain the two or more OSS enabled instruments in a fixed geometrical configuration relative to one another such that distally to the longitudinal body the two or more OSS enabled instruments have shape sensed reconstruction data registered therebetween.
摘要:
An optical shape sensing system and method with at least two optical fibers (OSF1, OSF2) both comprising optical shape sensing elements. A processor (P) is arranged to register a coordinate system indicative of a position of one of the optical fibers (OSF1) in space, and to register a position (R2) of the other optical fiber (OSF2) in relation to this coordinate system. An optical console system (C, C1, C2) serves to interrogate the optical shape sensing elements in both optical fibers (OSF1, OSF2), and to accordingly determine a measure of a three-dimensional shape (I) of both optical fibers (OSF1, OSF2), based on the registered position (R2) of the second optical fiber (OSF2) in relation to the coordinate system. This provide the possibility of providing 3D optical shape sensing of the length of both optical fibers (OSF1, OSF2), thus allowing 3D shape reconstruction of e.g. long medical devices with lengths of several meters. More than two shape sensing optical fibers, e.g. incorporated in separate devices, can be registered in this manner in a hierarchical data structure, thus allowing shape sensing of very long instruments.
摘要:
The invention addresses the problem of correctly positioning a catheter and reducing radiation doses. It relates to an X-ray imaging system (1) for a robotic catheter, comprising said catheter (3), and a processing unit (5) for receiving X-ray images of a patient environment (15). By being adapted to receive one or more auxiliary information items and using said information for determining the catheter position, the processing unit does not entirely have to rely on a large number of scanned image data, thus helping to reduce radiation while correctly delivering the catheter position as a function of as few as a single image, preferably 2D, and said one auxiliary information items. Further, said processing unit allows for at least one of rendering an image and provide said image to a visualization device (21), and providing feedback, e.g. steering commands, to said robotic catheter.
摘要:
The invention relates to a processing system (200) that is arranged to cooperate with an optical-shape-sensing-enabled elongated interventional device (1020, 1120, 1220, 1320, 1420), such as a catheter comprising an optical fiber. A reconstructed shape data providing unit (130) provides reconstructed shape data for the interventional device (1020, 1120, 1220, 1320, 1420). A virtual marking provider unit (140) provides at least one virtual marking (1020A, 1020B, 1101, 1102, 1103, 1201, 1203, 1204, 1301, 1302, 1401) based on the reconstructed shape data, for example as overlay to a x-ray image. The present invention thus turns any OSS-enabled device into a calibrated device, suitable for all kinds of live 3D measurements.