摘要:
First and second electrodes (107A,107B) are disposed at first and second locations, respectively, proximate to a periphery of a wafer support, wherein the first and second location are substantially opposed to each other relative to the wafer support. Each of the first and second electrodes can be moved to electrically connect with and disconnect from a wafer (101) held by the wafer support. An anode (109) is disposed over and proximate to the wafer such that a meniscus of electroplating solution is maintained between the anode and the wafer. As the anode moves over the wafer from the first location to the second location, an electric current is applied through the meniscus (111) between the anode and the wafer. Also, as the anode is moved over the wafer, the first and second electrodes are controlled to connect with the wafer while ensuring that the anode does not pass over an electrode that is connected.
摘要:
An electroplating head including a chamber having a fluid entrance and a fluid exit is provided. The chamber is configured to contain a flow of electroplating solution from the fluid entrance to the fluid exit. The electroplating head also includes an anode disposed within the chamber. The anode is configured to be electrically connected to a power supply. The electroplating head further includes a porous resistive material disposed at the fluid exit such that the flow of electroplating solution is required to traverse through the porous resistive material.
摘要:
First and second electrodes (107A,107B) are disposed at first and second locations, respectively, proximate to a periphery of a wafer support, wherein the first and second location are substantially opposed to each other relative to the wafer support. Each of the first and second electrodes can be moved to electrically connect with and disconnect from a wafer (101) held by the wafer support. An anode (109) is disposed over and proximate to the wafer such that a meniscus of electroplating solution is maintained between the anode and the wafer. As the anode moves over the wafer from the first location to the second location, an electric current is applied through the meniscus (111) between the anode and the wafer. Also, as the anode is moved over the wafer, the first and second electrodes are controlled to connect with the wafer while ensuring that the anode does not pass over an electrode that is connected.
摘要:
An electroplating head including a chamber having a fluid entrance and a fluid exit is provided. The chamber is configured to contain a flow of electroplating solution from the fluid entrance to the fluid exit. The electroplating head also includes an anode disposed within the chamber. The anode is configured to be electrically connected to a power supply. The electroplating head further includes a porous resistive material disposed at the fluid exit such that the flow of electroplating solution is required to traverse through the porous resistive material.
摘要:
One of many embodiments of a substrate preparation system is provided which includes a head having a head surface where the head surface is proximate to a surface of the substrate. The system also includes a first conduit for delivering a first fluid to the surface of the substrate through the head, and a second conduit for delivering a second fluid to the surface of the substrate through the head, where the second fluid is different than the first fluid. The system also includes a third conduit for removing each of the first fluid and the second fluid from the surface of the substrate where the first conduit, the second conduit and the third conduit act substantially simultaneously. In an alternative embodiment, a method for processing a substrate is provided that includes generating a fluid meniscus on a surface of the substrate and applying acoustic energy to the fluid meniscus. The method also includes moving the fluid meniscus over the surface the substrate to process the surface of the substrate.
摘要:
One of many embodiments of a substrate preparation system is provided which includes a head having a head surface where the head surface is proximate to a surface of the substrate. The system also includes a first conduit for delivering a first fluid to the surface of the substrate through the head, and a second conduit for delivering a second fluid to the surface of the substrate through the head, where the second fluid is different than the first fluid. The system also includes a third conduit for removing each of the first fluid and the second fluid from the surface of the substrate where the first conduit, the second conduit and the third conduit act substantially simultaneously. In an alternative embodiment, a method for processing a substrate is provided that includes generating a fluid meniscus on a surface of the substrate and applying acoustic energy to the fluid meniscus. The method also includes moving the fluid meniscus over the surface the substrate to process the surface of the substrate.