Abstract:
The present application relates to a composite material. According to the present application, a composite material having high magnetic permeability and excellent other physical properties such as flexibility, electrical insulation, mechanical properties and/or resistance to heat or oxidation can be provided in a simple and economical process.
Abstract:
The present application can provide a composite material which comprises a metal foam and a polymer component and has other excellent physical properties such as impact resistance, processability and insulation properties while having excellent thermal conductivity.
Abstract:
The present application provides a method for preparing a metal foam. The present application provides a method which can freely control characteristics, such as pore size and porosity, of the metal foam, prepare the metal foam in the form of films or sheets which have conventionally been difficult to produce, particularly the form of thin films or sheets as well, and prepare a metal foam having excellent other physical properties such as mechanical strength. According to one example of the present application, it is possible to efficiently form a structure in which such a metal foam is integrated on a metal base material with good adhesive force.
Abstract:
The present invention relates to a nozzle assembly and a 3D printer, and according to one aspect of the present invention, there is provided a nozzle assembly comprising a housing, a nozzle disposed in the housing and connected to an ink supply part, a first coil, which is disposed in the housing, for generating a magnetic field when a power source is applied, a second coil disposed in the housing, disposed so as to surround the nozzle and the first coil and generating a magnetic field when a power source is applied, provided that at least one of the magnetic field effective area and the magnetic field intensity is different from that of the first coil, and a lift part for lifting the nozzle and the first and second coils, respectively, so as to be positioned in the housing or exposed to the outside of the housing.
Abstract:
The present application provides a method for manufacturing a metal foam. The present application can provide a method for manufacturing a metal foam, which is capable of forming a metal foam comprising uniformly formed pores and having excellent mechanical properties as well as the desired porosity, and a metal foam having the above characteristics. In addition, the present application can provide a method capable of forming a metal foam in which the above-mentioned physical properties are ensured, while being in the form of a thin film or sheet, within a fast process time, and such a metal foam.
Abstract:
The present invention relates to a composition for 3D printing, a 3D printing method using the same, and a three-dimensional comprising the same, and provides a composition for 3D printing capable of realizing a three-dimensional shape having precision and excellent curing stability.
Abstract:
Disclosed herein are a battery pack system to supply current necessary to operate an external device, the battery pack system including a battery module including a plurality of battery cells which can be charged and discharged, the battery module to supply power to the external device, a temperature sensor to detect the temperature of the battery module, an auxiliary power unit to supply a charge and discharge pulse current to the battery module, and a controller to connect the auxiliary power unit to the battery module so that the charge and discharge pulse current is supplied to the battery module when a measured temperature (T bat ) of the battery module is less than a set temperature (T crit ) based on information detected by the temperature sensor before the battery module is electrically connected to the external device and to interrupt the supply of the charge and discharge pulse current to the battery module when the temperature of the battery module becomes equal to or greater than the set temperature (T crit ) and an operating method of the same.
Abstract:
Disclosed herein is a battery pack case configured to receive a battery module assembly including a plurality of battery modules, each having a plurality of battery cells or unit modules mounted therein, sequentially stacked, wherein a coolant inlet port and a coolant outlet port are located at the upper part and the lower part of the battery pack case, respectively, in a state in which the coolant inlet port and the coolant outlet port are opposite to each other such that a coolant for cooling the unit modules flows from one side of the battery modules to the opposite side of the battery modules in a direction perpendicular to a direction in which the unit modules are stacked, and an inclined plate for guiding the flow of the coolant is provided between the battery pack case and the battery modules.