摘要:
The first object of the present invention is to provide a PDP with improved panel brightness which is achieved by improving the efficiency in conversion from discharge energy to visible rays. The second object of the present invention is to provide a PDP with improved panel life which is achieved by improving the protecting layer protecting the dielectric glass layer. To achieve the first object, the present invention sets the amount of xenon in the discharge gas to the range of 10% by volume to less than 100% by volume, and sets the charging pressure for the discharge gas to the range of 500 to 760Torr which is higher than conventional charging pressures. With such construction, the panel brightness increases. Also, to achieve the second object, the present invention has, on the surface of the dielectric glass layer, a protecting layer consisting of an alkaline earth oxide with (100)-face or (110)-face orientation. The protecting layer, which may be formed by using thermal Chemical Vapor Deposition (CVD) method, plasma enhanced CVD method, or a vapor deposition method with irradiation of ion or electron beam, will have a high sputtering resistance and effectively protects the dielectric glass layer. Such a protecting layer contributes to the improvement of the panel life.
摘要:
A resistor for a cathode ray tube includes a mixture of at least one of a metal conductive oxide and a transition metal material with an insulating oxide. A method for producing such a resistor includes the steps of forming an electrode on one of an alumina substrate, a glass substrate and a glass tube; and flame-spraying a mixture of at least one of a metal conductive oxide and a transition metal material with an insulating oxide, thereby depositing the mixture on the one of the alumina substrate, the glass substrate and the glass tube.
摘要:
The present invention aims to provide a method of producing a plasma display panel in which the fluorescent substance layer or the reflection layer is formed easily and accurately even for a minute cell structure, and in which the fluorescent substance layer or the reflection layer is formed evenly in the channels between the partition walls formed in stripes, or such a layer is formed also on the sides of the partition walls. To achieve this purpose, a fluorescent substance layer or a reflection layer is formed by applying a fluorescent substance ink or a reflection material ink continuously onto the channels, the ink being spouted out from a nozzle which runs along the partition walls. The nozzle may be directed to one side of the plurality of partition walls while running. Pressure may be put upon the ink having been applied onto the channels so that the ink sticks to both sides of the partition walls. The ink may be continuously spouted out from a nozzle while a bridge is formed between the nozzle and both sides of the partition walls by surface tension of the ink. A plate with a plurality of partition walls and channels in between may be formed so that adsorption of the sides of the channels against the ink is higher than that of the bottom of the channels.
摘要:
A PDP with superior light-emitting characteristics and colour reproduction is achieved by setting the chromaticity coordinate y (the CIE colour specification) of light to 0.08 or less, more preferably 0.07 or less, or 0.06 or less, enabling the colour temperature of light to be set to 7,000K or more, and further to 8,000K or more, 9,000K or more or 10,000K or more. The PDP is manufactured by a method in which the processes for heating the fluorescent substances such as the fluorescent substance baking, sealing material temporary baking, bonding, and exhausting processes are performed in a dry gas atmosphere, or in an atmosphere in which a dry gas is circulated at a pressure lower than the atmospheric pressure. More particularly, the method comprises a preparative heating step for heating a front panel and a back panel in an atmosphere of dry gas while a space between the sides of the panels facing each other is opened, a fluorescent substance layer being formed on at least one of the front panel and the back panel, a sealing material layer being formed on at least one of the front panel and the back panel; and a bonding step for, after the preparative heating step, putting the front panel and the back panel together to form inner space between the panels, and bonding the front panel and the back panel by maintaining a bonding temperature equal to or higher than a softening point of the sealing material.
摘要:
The first object of the present invention is to provide a PDP with improved panel brightness which is achieved by improving the efficiency in conversion from discharge energy to visible rays. The second object of the present invention is to provide a PDP with improved panel life which is achieved by improving the protecting layer protecting the dielectrics glass layer. To achieve the first object, the present invention sets the amount of xenon in the discharge gas to the range of 10% by volume to less than 100% by volume, and sets the charging pressure for the discharge gas to the range of 500 to 760Torr which is higher than conventional charging pressures. With such construction, the panel brightness increases. Also, to achieve the second object, the present invention has, on the surface of the dielectrics glass layer, a protecting layer consisting of an alkaline earth oxide with (100)-face or (110)-face orientation. The protecting layer, which may be formed by using thermal Chemical Vapor Deposition (CVD) method, plasma enhanced CVD method, or a vapor deposition method with irradiation of ion or electron beam, will have a high sputtering resistance and effectively protect the dielectrics glass layer. Such a protecting layer contributes to the improvement of the panel life.