摘要:
A MEMS acceleration sensor comprising: a frame, a plurality of proofmasses; a plurality of flexures; a plurality of hinges and a plurality of gauges. The frame, proofmasses, flexures, hinges and gauges designed to measure acceleration in a direction perpendicular to the device plane while being generally resistant to motions parallel to the device plane. The measurement of the acceleration is accomplished through the piezoresistive effect of the strain in the gauges.
摘要:
A motion-sensitive low-G MEMS acceleration switch, which is a MEMS switch that closes at low-g acceleration (e.g., sensitive to no more than 10 Gs), is proposed. Specifically, the low-G MEMS acceleration switch has a base, a sensor wafer with one or more proofmasses, an open circuit that includes two fixed electrodes, and a contact plate. During acceleration, one or more of the proofmasses move towards the base and connects the two fixed electrodes together, resulting in a closing of the circuit that detects the acceleration. Sensitivity to low-G acceleration is achieved by proper dimensioning of the proofmasses and one or more springs used to support the proofmasses in the switch.
摘要:
A MEMS acceleration sensor comprising: a frame, a plurality of proofmasses; a plurality of flexures; a plurality of hinges and a plurality of gauges. The frame, proofmasses, flexures, hinges and gauges designed to measure acceleration in a direction perpendicular to the device plane while being generally resistant to motions parallel to the device plane. The measurement of the acceleration is accomplished through the piezoresistive effect of the strain in the gauges.