摘要:
The provision of a porous electrode substrate that has large sheet strength, low production costs, high handling properties, high thickness precision and surface smoothness, and sufficient gas permeability and electrical conductivity. A porous electrode substrate including a three-dimensional entangled structure including short carbon fibers (A) dispersed in a three-dimensional structure, joined together via three-dimensional mesh-like carbon fibers (B). A method for producing a porous electrode substrate, including a step (1) of producing a precursor sheet including short carbon fibers (A), and short carbon fiber precursors (b) and/or fibrillar carbon fiber precursors (b') dispersed in a two-dimensional plane; a step (2) of subjecting the precursor sheet to entanglement treatment; and a step (3) of subjecting this sheet to carbonization treatment at 1000°C or higher. It is preferable to include a step (4) of subjecting the sheet to hot press forming at lower than 200°C between step (2) and step (3), and to further include a step (5) of subjecting the sheet after hot press forming to oxidation treatment at 200°C or higher and lower than 300°C between step (4) and step (3).
摘要:
The present invention provides a porous electrode substrate that has high sheet strength, low production cost, and sufficient gas permeability and electrical conductivity, and a method for producing the same. In the present invention, the porous electrode substrate is produced by producing a precursor sheet including short carbon fibers (A), and one or more types of short precursor fibers (b) that undergo oxidation and/or one or more types of fibrillar precursor fibers (b') that undergo oxidation, all of which are dispersed in a two-dimensional plane, subjecting the precursor sheet to entanglement treatment to form a three-dimensional entangled structure, then impregnating the precursor sheet with carbon powder and fluorine-based resin, and further heat treating the precursor sheet at a temperature of 150°C or higher and lower than 400°C. This porous electrode substrate includes a three-dimensional entangled structure including short carbon fibers (A) dispersed in a three-dimensional structure, joined together via oxidized fibers (B), short carbon fibers (A) and oxidized fibers (B) being further joined together via carbon powder and fluorine-based resin.
摘要:
Provided is a porous electrode substrate having excellent thickness precision, gas permeability and conductivity, handling efficiency, low production costs and a high carbonization rate during carbonization. Also provided are a method for manufacturing such a substrate, a precursor sheet and fibrillar fiber used for forming such a substrate, along with a membrane electrode assembly and a polymer electrolyte fuel cell that contain such a substrate. The method for manufacturing a porous electrode substrate includes step (1) for manufacturing a precursor sheet in which short carbon fibers (A) and carbon fiber precursor (b) are dispersed, and step (2) for carbonizing the precursor sheet, and the volume contraction rate of carbon fiber precursor (b) in step (2) is 83% or lower. The present invention also relates to a porous electrode substrate obtained by such a manufacturing method, a precursor sheet and fibrillar fiber used for forming the substrate, along with a membrane electrode assembly and a polymer electrolyte fuel cell containing the substrate.
摘要:
The present invention provides a porous electrode substrate that has low production cost, high mechanical strength, thickness precision, and surface smoothness, and sufficient gas permeability and electrical conductivity, and a method for producing the same. In the present invention, for example, a porous electrode substrate that includes short carbon fibers (A) joined together via three-dimensional mesh-like carbon fibers (B) is produced by a method including a step (1) of dispersing short carbon fibers (A), and short carbon fiber precursors (b) to be fibrillated by beating, to produce a precursor sheets; and a step (2) of subjecting the precursor sheet to carbonization treatment at a temperature of 1000°C or higher.
摘要:
Provided are: a porous electrode substrate which has excellent handling properties and surface smoothness and satisfactory gas permeability and electrical conductivity, and enables the reduction of damage to a polymer electrolyte membrane when integrated into a fuel cell; and a process for producing the porous electrode substrate. Specifically provided are: a porous electrode substrate comprising a three-dimensional structure (Y-1) produced by bonding short carbon fibers through carbon and a three-dimensional structure (Y-2) produced by bonding short carbon fibers through carbon, wherein the three-dimensional structures (Y-1) and (Y-2) are layer stacked on and integrated with each other, the short carbon fibers form a three-dimensional entangled structure in the structure (Y-1), and the short carbon fibers do not form a three-dimensional entangled structure in the structure (Y-2); a process for producing the electrode base material; a precursor sheet for producing the electrode base material; a membrane-electrode assembly which involves the electrode base material; and a polymer electrolyte fuel cell.
摘要:
According to the present invention, a porous electrode substrate with greater sheet strength, lower production cost, and excellent gas permeability and conductivity as well as its manufacturing method are provided. Also provided are a precursor sheet for forming such a substrate, and a membrane electrode assembly and a polymer electrolyte fuel cell containing such a substrate. The method for manufacturing such a porous electrode substrate includes the following steps [1] ∼ [3]: [1] a step for manufacturing a sheet material in which short carbon fibers (A) are dispersed; [2] a step for manufacturing a precursor sheet by adding a water-soluble phenolic resin and/or water-dispersible phenolic resin to the sheet material; and [3] a step for carbonizing the precursor sheet at a temperature of 1000°C or higher. The present invention also relates to a porous electrode substrate obtained by such a manufacturing method as well as a precursor sheet to be used for manufacturing the substrate, a membrane electrode assembly and a polymer electrolyte fuel cell.
摘要:
Provided are: a porous electrode substrate which has excellent handling properties and surface smoothness and satisfactory gas permeability and electrical conductivity, and enables the reduction of damage to a polymer electrolyte membrane when integrated into a fuel cell; and a process for producing the porous electrode substrate. Specifically provided are: a porous electrode substrate comprising a three-dimensional structure (Y-1) produced by bonding short carbon fibers through carbon and a three-dimensional structure (Y-2) produced by bonding short carbon fibers through carbon, wherein the three-dimensional structures (Y-1) and (Y-2) are layer stacked on and integrated with each other, the short carbon fibers form a three-dimensional entangled structure in the structure (Y-1), and the short carbon fibers do not form a three-dimensional entangled structure in the structure (Y-2); a process for producing the electrode base material; a precursor sheet for producing the electrode base material; a membrane-electrode assembly which involves the electrode base material; and a polymer electrolyte fuel cell.
摘要:
Provided is a porous electrode substrate having high mechanical strength, good handling properties, high thickness precision, little undulation, and adequate gas permeability and conductivity. Also provided is a method for producing a porous electrode substrate at low costs. A porous electrode substrate is produced by joining short carbon fibers (A) via mesh-like of carbon fibers (B) having an average diameter of 4 µm or smaller. Further provided are a membrane-electrode assembly and a polymer electrolyte fuel cell that use this porous electrode membrane. A porous electrode substrate is obtained by subjecting a precursor sheet, in which short carbon fibers (A) and short carbon fiber precursors (b) having an average diameter of 5 µm or smaller have been dispersed, to carbonization treatment after optional hot press forming and optional oxidization treatment.