摘要:
The present invention provides a catalyst for electrode having excellent catalytic activity capable of contributing to cost reduction of PEFC. This catalyst for electrodes comprises: a porous carbon support which has nanopores having a pore diameter of from 1 nm to 20 nm; and a plurality of catalyst particles which are supported by the support. The catalyst particles contain Pt (zerovalent), and are supported by both inner portions and outer portions of the nanopores of the support. If an analysis of the particle size distribution of the catalyst particles is performed using three-dimensional reconstructed images obtained through a STEM-based electron tomography measurement, the proportion of the catalyst particles supported by the inner portions of the nanoparticles is 50% or more; at least one nanopore is formed in a cubic image having a side of from 20 nm to 50 nm, said cubic image being obtained from a three-dimensional reconstructed image of a catalyst aggregate; and this nanopore has the shape of a continuously extending interconnected pore.
摘要:
Provide an electrode catalyst with excellent catalytic activity that can contribute to cost reduction of PEFC. The electrode catalyst includes a hollow carbon carrier with mesopores with a pore size of 2 to 50nm and a catalyst particle supported on the carrier. The catalyst particle is supported on both inside and outside the mesopores of the carrier, and have a core portion formed on the carrier and a shell portion covering at least a part of the surface of the core portion. Pd is included in the core portion, and Pt is included in the shell portion, and when the analysis of the particle size distribution of the catalyst particles using the three dimensional reconstructed image obtained by electron beam tomography (electron tomography) measurement using an STEM is performed, the ratio of the catalyst particles supported inside the mesopore is 50% or more.
摘要:
Provided is a production method of an electrode catalyst that can reduce the content of chlorine species reliably and sufficiently through a simple operation, even when using an electrode catalyst precursor containing a high concentration of chlorine (Cl) species as a raw material of the electrode catalyst. The production method of the electrode catalyst has a core-shell structure including a core part formed on a support and a shell part formed to cover at least a part of a surface of the core part. The production method includes a first step (1) of preparing a first liquid with an electrode catalyst precursor (I) being dispersed in ultrapure water by adding the electrode catalyst precursor (I) to the ultrapure water, the electrode catalyst precursor (I) being produced using a material containing chlorine (Cl) species, and exhibiting a chlorine (Cl) species concentration not lower than a first chlorine (Cl) species concentration when measured by X-ray fluorescence (XRF) spectroscopy; and a second step (2) of preparing a second liquid by dispersing an electrode catalyst precursor (II), the electrode catalyst precursor (II) being obtained by filtrating and washing the electrode catalyst precursor (I) contained in the first liquid with ultrapure water , and then performing washing until an electric conductivity p of a filtrate has become a first value or lower.
摘要:
An object of the present invention is to provide a method of producing an electrode catalyst having excellent catalytic activity and excellent durability in an electrode catalyst layer of MEA for a PEFC. The method of producing an electrode catalyst having a porous carbon support that has nanopores having a pore diameter of 1 to 20 nm and a BET specific surface area of 700 to 900 m 2 /g, and catalyst particles containing Pt supported on the support, includes: a first step for preparing a powder in which the catalyst particles are supported on the support; and a second step for accommodating the powder obtained through the first step in a flow-type reactor, flowing NH 3 gas through the reactor under conditions of a concentration of 10 to 100% and a pressure of 0.1 MPa to 0.5 MPa, and regulating the temperature in the reactor to 500 °C or more and less than the decomposition temperature of ammonia, keeping for 5 to 10 hours to chemically react the powder and the NH 3 gas.
摘要:
Provided is an electrode catalyst that can exhibit sufficient performance, is suitable for mass production, and is suitable for reducing production costs, even when containing a relatively high concentration of chlorine. The electrode catalyst has a core-shell structure including a support; a core part that is formed on the support; and a shell part that is formed so as to cover at least one portion of the surface of the core part. A concentration of bromine (Br) species of the electrode catalyst as measured by X-ray fluorescence (XRF) spectroscopy is 500 ppm or less, and a concentration of chlorine (Cl) species of the electrode catalyst as measured by X-ray fluorescence (XRF) spectroscopy is 8,500 ppm or less.
摘要:
To provide electrode catalyst (core-shell catalyst) having an excellent catalyst activity which contributes to lower the cost of the PEFC. The electrode catalyst has catalyst particles supported on a support. The catalyst particle has a core part containing simple Pd and a shell part containing simple Pt. A percentage R C (atom%) of the carbon of the support and a percentage R Pd (atom%) of the simple Pd in an analytical region near a surface measured by X-ray photoelectron spectroscopy (XPS) satisfy the conditions of the following equation (1): 2.15 ≤ [100 x R Pd / (R Pd +R C )].
摘要:
Provided is a catalyst for electrode that has excellent catalytic activity and that is capable of contributing toward lower PEFC costs. This catalyst for electrode includes: a hollow carbon support having nanopores with a pore diameter of 1 to 20 nm; and a plurality of catalyst particles supported on the support. The catalyst particles are supported both inside and outside the nanopores of the support, are composed of (zerovalent) Pt, and when analysis of the particle size distribution of the catalyst particles is performed using three-dimensional, reconstructed images obtained through STEM-based electron tomography measurement, the percentage of catalyst particles supported inside the nanopores is 50% or more.
摘要:
The present invention provides an electrode catalyst which has excellent catalytic activity, and which can contribute to reducing the cost of a polymer electrolyte fuel cell (PEFC). According to the present invention, an electrode catalyst includes a hollow carrier including nanopores having a pore size of 1 to 20 nm, and a plurality of catalyst particles. The catalyst particles are supported both inside and outside the nanopores of the carrier, and comprise (zero-valent) Pt, and when a particle size distribution analysis of the catalyst particles is carried out using a three-dimensional reconstructed image obtained by electron beam tomography measurement employing STEM, the conditions of formula (S1): 100×(N10/N20)≤8.0 are satisfied (in the formula, N10 is the number of noble metal particles not in contact with a pore having a pore size of 1 nm or more, and N20 is the number of catalyst particles supported inside the nanopores of the carrier).
摘要:
An aromatic nitro compound has a structure in which a nitro group and a halogen atom, in a separated state, are directly bonded as substituents to the ring structure of the same ring; a reaction composition is provided which, in a hydrogenation reaction of the nitro group of said aromatic nitro compound, allows selectively hydrogenating the nitro group, and sufficiently reducing the separation of the halogen atom from the ring; also provided is a reaction system that uses this reaction composition. This reaction composition includes a catalyst which, with the aforementioned aromatic nitro compound as reactant, is used in a hydrogenation reaction of at least one of the one or more nitro groups of said reactant. Further, the reaction composition includes a base and an organic solvent. The catalyst includes a carrier, and Fe oxide particles and Pt particles supported by the carrier. Further, the base has basicity stronger than that of at least one of the aromatic amines having one or more amino groups obtained as the product of the hydrogenation reaction. Furthermore, the organic solvent can dissolve at least part of the reactant.
摘要:
Provided is a production method of an electrode catalyst that can reduce the content of chlorine species reliably and sufficiently through a simple operation, even when using an electrode catalyst precursor containing a high concentration of chlorine (Cl) species as a raw material of the electrode catalyst. The production method of the electrode catalyst has a core-shell structure including a core part formed on a support and a shell part formed to cover at least a part of a surface of the core part. The production method includes a first step (1) of preparing a first liquid with an electrode catalyst precursor (I) being dispersed in ultrapure water by adding the electrode catalyst precursor (I) to the ultrapure water, the electrode catalyst precursor (I) being produced using a material containing chlorine (Cl) species, and exhibiting a chlorine (Cl) species concentration not lower than a first chlorine (Cl) species concentration when measured by X-ray fluorescence (XRF) spectroscopy; and a second step (2) of preparing a second liquid by dispersing an electrode catalyst precursor (II), the electrode catalyst precursor (II) being obtained by filtrating and washing the electrode catalyst precursor (I) contained in the first liquid with ultrapure water , and then performing washing until an electric conductivity p of a filtrate has become a first value or lower.