Abstract:
The present invention provides a means to integrate planar coils on silicon, while providing a high inductance. This high inductance is achieved through a special back- and front sided shielding of a material. Inmany applications, high-value inductors are a necessity. In particular, this holds for applications in power management. In these applications, the inductors are at least 5 of the order of 1 μH, and must have an equivalent series resistance of less than 0.1 Ω. For this reason, those inductors are always bulky components, of a typical size of 2 x 2 x 1 mm 3, which make a fully integrated solution impossible. On the other hand, integrated inductors, which can monolithically be integrated, do exist. However, these inductors suffer either from low inductance values, or 10 veryhigh DC resistance values.
Abstract:
The chip (100) comprises a network of trench capacitors (102) and an inductor (114), wherein the trench capacitors (102) are coupled in parallel with a pattern of interconnects (113A,B,..) that is designed so as to limit generation of eddy current induced by the inductor (114) in the interconnects (113A,B,..). This allows the use of the chip (100) as a portion of a DC-DC converter, that is integrated in an assembly of a first chip and this - second chip (100). The inductor of this integrated DC-DC converter may be defined elsewhere within the assembly.
Abstract:
The present invention relates to a configurable trench multi-capacitor device comprising a trench in a semiconductor substrate. The trench has a lateral extension exceeding 10 micrometer and a trench filling includes a number of at least four electrically conductive capacitor-electrode layers. A switching unit is provided that comprises a plurality of switching elements electrically interconnected between different capacitor-electrode layers of the trench filling. A control unit is connected with the switching unit and configured to generate and provide to the switching unit respective control signals for forming a respective one of a plurality of multi-capacitor configurations using the capacitor-electrode layers of the trench filling.
Abstract:
The present invention relates to an electronic device (300) comprising at least one trench capacitor (302) that can also take the form of an inverse structure, a pillar capacitor. An alternating layer sequence (308) of at least two dielectric layers (312, 316) and at least two electrically conductive layers (314, 318) is provided in the trench capacitor or on the pillar capacitor, such that the at least two electrically conductive layers are electrically isolated from each other and from the substrate by respective ones of the at least two dielectric layers. A set of internal contact pads (332, 334, 340) is provided, and each internal contact pad is connected with a respective one of the electrically conductive layers or with the substrate. By providing an individual internal contact pad for each of the electrically conductive layers, a range of switching opportunities is opened up that allows tuning the specific capacitance of the capacitor to a desired value. The electronic device of the invention thus provides a flexible trench-capacitor manufacturing platform for a multitude of combinations of electrically conductive layers with each other, or, when multiple trenches are used, between electrically conductive layers of different trench capacitors. On-chip applications such as a charge-pump circuit or a DC-to-DC voltage converter are claimed that benefit from the ultra-high capacitance density and the high breakdown voltage that can be achieved with the electronic device of the invention.
Abstract:
In a wireless communications system, such as a multiband Ultra Wideband communications system, data is transmitted by means of the phases of pulses in multiple frequency bands. A signal is transmitted with a predetermined phase in at least one of the frequency bands for at least a part of the time, and can be used to allow accurate detection of the phases of the signals transmitted in the other frequency bands. One of the frequency bands can be designated as a reference band, and pulses can be transmitted with constant phase in the reference band. More generally, pulses can be transmitted in the other frequency bands with phases which have a known relationship with the phases of the pulses in the reference band.
Abstract:
An electronic device is provided which comprises a DC-DC converter. The DC-DC converter comprises at least one solid-state rechargeable battery (B1, B2) for storing energy for the DC-DC conversion and an output capacitor (C2).