摘要:
Inorganic particle/polymer composites are described that involve chemical bonding between the elements of the composite. In some embodiments, the composite composition includes a polymer having side groups chemically bonded to inorganic particles. Furthermore, the composite composition can include chemically bonded inorganic particles and ordered polymers. Various electrical, optical and electro-optical devices can be formed from the composites.
摘要:
A method for the production of elemental carbon fibers and carbon particles uses highly uniform catalyst particles, preferably made by laser pyrolysis. Preferred catalyst particles include elemental iron, iron carbides or iron sulfides, generally with an average particle diameter from about 1000 nm to about 5 nm. Also, preferred catalyst particles have a narrow distribution in particle diameters as well as a cut off in particle size such that the diameter distribution does not have a tail toward large diameters.
摘要:
Polishing compositions are described that are appropriate for fine polishing to very low tolerances. The polishing compositions include particles with small diameters with very narrow distributions in size and effectively no particles with diameters several times larger than the average diameter. Furthermore, the particles generally have very high uniformity with respect to having a single crystalline phase. Preferred particles have an average diameter less than about 200 nm. Laser pyrolysis processes are described for the production of the appropriate particles including metal oxides, metal carbides, metal sulfides, SiO2 and SiC.
摘要:
Polymer-inorganic particle blends are incorporated into structures generally involving interfaces with additional materials that can be used advantageously for forming desirable devices. In some embodiments, the structures are optical structures, and the interfaces are optical interfaces. The different materials at the interface can have differences in index-of-refraction to yield desired optical properties at the interface. In some embodiments, structures are formed with periodic variations in index-of-refraction. In particular, photonic crystals can be formed. Suitable methods can be used to form the desired structures.
摘要:
A collection of silicon oxide nanoparticles have an average diameter from about 5 nm to about 100 nm. The collection of silicon oxide nanoparticles effectively include no particles with a diameter greater than about four times the average diameter. The particles generally have a spherical morphology. Methods for producing the nanoparticles involve laser pyrolysis. The silicon oxide nanoparticles are effective for the production of improved polishing compositions including compositions useful for chemical-mechanical polishing.
摘要:
Tin oxide nanoparticles were produced with tin in a variety of oxidation states. In particular, nanoparticles of single phase, crystalline SnO2 were produced. Preferred tin oxide nanoparticles have an average diameter from about 5 nm to about 100 nm with an extremely narrow distribution of particle diameters. The tin oxide nanoparticles can be produced in significant quantities using a laser pyrolysis apparatus. Nanoparticles produced by laser pyrolysis can be subjected to further processing to change the properties of the particles without destroying the nanoscale size of the particles. The nanoscale tin oxide particles are useful for the production of transparent electrodes for use in flat panel displays.
摘要:
Nanoscale UV absorbing particles are described that have high UV absorption cross sections while being effectively transparent to visible light. These particles can be used to shield individuals from harmful ultraviolet radiation. These particles can also be used in industrial processing especially to produce solid state electronic devices by creating edges of photoresist material with a high aspect ratio. The UV absorbing particles can also be used as photocatalysts that become strong oxidizing agents upon exposure to LV light. Laser pyrolysis provides an efficient method for the production of suitable particles.
摘要:
Nanoscale UV absorbing particles are described that have high UV absorption cross sections while being effectively transparent to visible light. These particles can be used to shield individuals from harmful ultraviolet radiation. These particles can also be used in industrial processing especially to produce solid state electronic devices by creating edges of photoresist material with a high aspect ratio. The UV absorbing particles can also be used as photocatalysts that become strong oxidizing agents upon exposure to LV light. Laser pyrolysis provides an efficient method for the production of suitable particles.