Abstract:
Provided is a method for producing a sintered body that forms a rare-earth permanent magnet, has a single sintered structure and an arbitrary shape, and has easy magnetization axis orientations of different directions applied to the magnet material particles in a plurality of arbitrary regions. This method forms a three-dimensional first molded article from a composite material formed by mixing a resin material and magnet material particles containing a rare-earth substance. While keeping the first molded article at a temperature higher than the softening temperature of the resin, a parallel external magnetic field having parallel magnetic flux is imparted to the first molded article, and as a result, the axis of easy magnetization of the magnet material particles is oriented in parallel to the direction of the external magnetic field. Then, by subjecting the first molded article to a deforming force such as one that changes the horizontal cross-sectional shape of at least one section of a horizontal cross-section of the first molded article, a second molded article is formed in which the orientation direction of the easy magnetization axis of the magnet material particles in at least the one section of the horizontal cross-section is changed to a direction which differs from the orientation direction of the first molded article. The second molded article is heated to a sintering temperature and kept at the sintering temperature for a prescribed period of time. The resin inside the second molded article is vaporized, which forms a sintered body in which the magnet material particles are sintered to one another.
Abstract:
There are provided a permanent magnet and a manufacturing method thereof capable of efficiently concentrating traces of Dy or Tb in grain boundaries of the magnet and sufficiently improving coercive force due to Dy or Tb while reducing amount of Dy or Tb to be used. To fine powder of milled neodymium magnet material is added an organometallic compound solution containing an organometallic compound expressed with a structural formula of M-(OR) x (M represents Dy or Tb, R represents a substituent group consisting of a straight-chain or branched-chain hydrocarbon, x represents an arbitrary integer) so as to uniformly adhere the organometallic compound to particle surfaces of the neodymium magnet powder. Thereafter, a compact body compacted through powder compaction is held for several hours in hydrogen atmosphere at 200 through 900 degrees Celsius for a hydrogen calcination process. Thereafter, through sintering process, the compact body is formed into a permanent magnet.
Abstract:
There are provided a permanent magnet and a manufacturing method thereof enabling carbon content contained in magnet particles to be reduced in advance before sintering even when wet milling is employed. Coarsely-milled magnet powder is further milled by a bead mill in a solvent together with an organometallic compound expressed with a structural formula of M-(OR) x (M represents V, Mo, Zr, Ta Ti W or Nb, R represents a substituent group consisting of a straight-chain or branched-chain hydrocarbon, x represents an arbitrary integer) so as to uniformly adhere the organometallic compound to particle surfaces of the magnet powder. Thereafter, a compact body of compacted magnet powder is held for several hours in hydrogen atmosphere at 200 through 900 degrees Celsius to perform hydrogen calcination process. Thereafter, through sintering process, a permanent magnet 1 is formed.
Abstract:
There are provided a permanent magnet and a manufacturing method thereof capable of inhibiting grain growth of magnet grains having single domain particle size during sintering so as to improve magnetic properties. To fine powder of milled neodymium magnet is added an organometallic compound solution containing an organometallic compound expressed with a structural formula of M-(OR) x (M represents V, Mo, Zr, Ta, Ti, W or Nb, R represents a substituent group consisting of a straight-chain or branched-chain hydrocarbon, X represents an arbitrary integer) so as to uniformly adhere the organometallic compound to particle surfaces of the neodymium magnet powder. Thereafter, the desiccated magnet powder is calcined by utilizing plasma heating and the powdery calcined body is sintered so as to form a permanent magnet 1.
Abstract:
There are provided a permanent magnet and a manufacturing method thereof capable of preventing degrade in the magnetic properties by densely sintering the entirety of the magnet. To fine powder of milled neodymium magnet is added an organometallic compound solution containing an organometallic compound expressed with a structural formula of M-(OR) x (M represents Dy or Tb, R represents a substituent group consisting of a straight-chain or branched-chain hydrocarbon, x represents an arbitrary integer) so as to uniformly adhere the organometallic compound to particle surfaces of the neodymium magnet powder. Thereafter, the desiccated magnet powder is calcined by utilizing plasma heating and the powdery calcined body is sintered so as to form a permanent magnet 1.