摘要:
A zero IF receiver which is capable of detecting short duration or CW signals and of operating over a large dynamic range. An embodiment of the receiver comprises an input terminal (10) for receiving an input signal, means (12, 18 to 26) coupled to the input for producing quadrature related, frequency down-converted first and second signals (I,Q). These first and second signals are applied to first and second amplifiers (28, 30) having a substantially sinh⁻¹ transfer characteristics to produce substantially logarithmic output signals. First and second digitising means (32, 34) are coupled to the outputs of the first and second amplifiers (28, 30), respectively; outputs of the first and second digitising means being connected to demodulating means (36). The demodulating means (36) being constructed and operated to convert the digitised in-phase andquadrature phase signals into amplitude and frequency descriptions of the input signal relative to a centre frequency of the receiver.
摘要:
A zero IF receiver which is capable of detecting short duration or CW signals and of operating over a large dynamic range. An embodiment of the receiver comprises an input terminal (10) for receiving an input signal, means (12, 18 to 26) coupled to the input for producing quadrature related, frequency down-converted first and second signals (I,Q). These first and second signals are applied to first and second amplifiers (28, 30) having a substantially sinh⁻¹ transfer characteristics to produce substantially logarithmic output signals. First and second digitising means (32, 34) are coupled to the outputs of the first and second amplifiers (28, 30), respectively; outputs of the first and second digitising means being connected to demodulating means (36). The demodulating means (36) being constructed and operated to convert the digitised in-phase andquadrature phase signals into amplitude and frequency descriptions of the input signal relative to a centre frequency of the receiver.
摘要:
A four quadrant multiplier circuit having a high dynamic range and capable of operating at low voltages comprises a dual transconductance amplifier circuit (TAC) consisting of NPN transistors (20 to 23 and 64 to 67), coupled to a first input port (36), first and second folded Darlington circuits (57,58), and a resistive element (78). Each said Darlington circuit comprises first and second NPN transistors (68,70 and 69,71) whose emitter-collector paths are connected in series and a third PNP transistor (72,73) having its emitter-collector path connected between the collector of the first transistor (68,69) and the base electrode of the second transistor (70,71). The emitter-collector junction (76,77) of the first and second transistors (68,70 and 69,71) is connected to the base electrode of the third transistor (72,73). The resistive element (78) is connected between the base electrodes of the third transistors (72,73). A second input port (56) is connected to the base electrodes of the first transistors (68,69). The emitter currents of the dual transconductance amplifier are supplied by way of current mirror circuits (80,81) from the emitter currents of the second transistors (70,71). The transconductance amplifier circuit (TAC) may be of any suitable type which has its transconductance linearly proportional to its emitter currents. In a refinement of the circuit, the current to voltage converter function of the current mirrors is carried out by the second transistors (70,71) and the transistors (82,83) of the current mirror circuits (80,81) are omitted.
摘要:
A four quadrant multiplier circuit having a high dynamic range and capable of operating at low voltages comprises a dual transconductance amplifier circuit (TAC) consisting of NPN transistors (20 to 23 and 64 to 67), coupled to a first input port (36), first and second folded Darlington circuits (57,58), and a resistive element (78). Each said Darlington circuit comprises first and second NPN transistors (68,70 and 69,71) whose emitter-collector paths are connected in series and a third PNP transistor (72,73) having its emitter-collector path connected between the collector of the first transistor (68,69) and the base electrode of the second transistor (70,71). The emitter-collector junction (76,77) of the first and second transistors (68,70 and 69,71) is connected to the base electrode of the third transistor (72,73). The resistive element (78) is connected between the base electrodes of the third transistors (72,73). A second input port (56) is connected to the base electrodes of the first transistors (68,69). The emitter currents of the dual transconductance amplifier are supplied by way of current mirror circuits (80,81) from the emitter currents of the second transistors (70,71). The transconductance amplifier circuit (TAC) may be of any suitable type which has its transconductance linearly proportional to its emitter currents. In a refinement of the circuit, the current to voltage converter function of the current mirrors is carried out by the second transistors (70,71) and the transistors (82,83) of the current mirror circuits (80,81) are omitted.
摘要:
A transconductance amplifier comprises first and second input transistors (TO1,TO2) to the base electrodes of which an input voltage (Vi) is applied. A constant current source (10) is connected to the emitters of the input transistors. Outputs are derived from their collector electrodes. A tapped impedance having two or more segments (RO to RN,RN to RO) is connected between the base electrodes of the input transistors (TO1,TO2). The base of a further transistor (T1 to TN,TN to T1) is connected to a respective tap (a1 to aN,aN to a1) of the tapped impedance. The emitter areas (e1 to eN,eN to e1) of these further transistors increase from each end of the tapped impedance towards the centre (28) of the tapped impedance. The emitters of the further transistors (T1 to TN,TN to T1) are connected to the current source (10) and the collectors are connected to a junction (26) which is connected to means (30) for computing the combined base currents of the further transistors (T1 to TN, TN to T1) from the combined collector currents at said junction (26). The computed current is supplied by a current mirror circuit (32) to the centre (28) of the tapped impedance to pull up the voltage at the centre (28). The tapped impedance can have an increased resistance without unduly loading a preceding stage.