摘要:
Provided is a phosphorus-containing ultrastable Y-type rare earth (RE) molecular sieve and the preparation method thereof. The method is: based on NaY molecular sieve as a raw material, obtaining "one-exchange one-roast" RE-Na Y-type molecular sieve through the steps of exchanging with RE, pre-exchanging with dispersing, and the first calcination; and then performing ammonium salt exchange, phosphorus modification, and the second calcination on the "one-exchange one-roast" RE-Na Y-type molecular sieve, wherein the sequence of the RE exchange and the pre-exchange with dispersing is unlimited, and the sequence of the ammonium salt exchange and the phosphorus modification is unlimited as well. The obtained molecular sieve contains RE oxide 1-20wt%, phosphorus 0.1-5wt%, and sodium oxide no more than 1.2wt%, and has a crystallization degree of 51-69% and a lattice parameter of 2.449-2.469nm. Heavy oil conversion rate can be increased by using the molecular sieve as an active component in a catalytic cracking catalyst.
摘要:
Provided is a phosphorus-containing ultrastable Y-type rare earth (RE) molecular sieve and the preparation method thereof. The method is: based on NaY molecular sieve as a raw material, obtaining "one-exchange one-roast" RE-Na Y-type molecular sieve through the steps of exchanging with RE, pre-exchanging with dispersing, and the first calcination; and then performing ammonium salt exchange, phosphorus modification, and the second calcination on the "one-exchange one-roast" RE-Na Y-type molecular sieve, wherein the sequence of the RE exchange and the pre-exchange with dispersing is unlimited, and the sequence of the ammonium salt exchange and the phosphorus modification is unlimited as well. The obtained molecular sieve contains RE oxide 1-20wt%, phosphorus 0.1-5wt%, and sodium oxide no more than 1.2wt%, and has a crystallization degree of 51-69% and a lattice parameter of 2.449-2.469nm. Heavy oil conversion rate can be increased by using the molecular sieve as an active component in a catalytic cracking catalyst.
摘要:
The present invention provides a catalytic cracking catalyst for heavy oil and preparation methods thereof. The catalyst comprises 2 to 50% by weight of a phosphorus-containing ultrastable rare earth Y-type molecular sieve, 0.5 to 30% by weight of one or more other molecular sieves, 0.5 to 70% by weight of clay, 1.0 to 65% by weight of high-temperature-resistant inorganic oxides, and 0.01 to 12.5% by weight of a rare earth oxide. The phosphorus-containing ultra-stable rare earth Y-type molecular sieve uses a NaY molecular sieve as a raw material. The raw material is subjected to a rare-earth exchange and a dispersing pre-exchange; the molecular sieve slurry is then filtered, washed with water and subjected to a first calcination to obtain a rare earth sodium Y molecular sieve which has been subjected to such "first-exchange first-calcination", wherein the steps of rare earth exchange and dispersing pre-exchange are not restricted in sequence; and then the rare earth sodium Y molecular sieve which has been subjected to "one-exchange one-calcination" is subjected to "second exchange and second calcination" including ammonium exchange and a phosphorus modification, wherein the steps of the ammonium exchange and the phosphorus modification are not restricted in sequence. The steps of the ammonium exchange and the phosphorus modification can be conducted continuously or non-continuously, the second calcination is conducted after the ammonium exchange for reducing sodium, the phosphorus modification can be conducted before or after the second calcination. The catalyst provided by the invention has the characteristics of high heavy oil conversion capacity, high total liquid yield, and high yield of light oil.