摘要:
This disclosure relates to techniques for providing hands-free augmented reality on a wireless communication device (WCD). According to the techniques, an application processor within the WCD executes an augmented reality (AR) application to receive a plurality of image frames and convert the plurality of image frames into a single picture comprising the plurality of image frames stitched together to represent a scene. The WCD executing the AR application then requests AR content for the scene represented in the single picture from an AR database server, receives AR content for the scene from the AR database server, and processes the AR content to overlay the single picture for display to a user on the WCD. In this way, the user may comfortably look at the single picture with the overlaid AR content on a display of the WCD to learn more about the scene represented in the single picture.
摘要:
Systems and methods of high dynamic range image combining are disclosed. In a particular embodiment, a device includes a global mapping module configured to generate first globally mapped luminance values within a region of an image, a local mapping module configured to generate second locally mapped luminance values within the region of the image, and a combination module configured to determine luminance values within a corresponding region of an output image using a weighted sum of the first globally mapped luminance values and the second locally mapped luminance values. A weight of the weighted sum is at least partially based on a luminance variation within the region of the image.
摘要:
Apparatus and methods for conditional display of a stereoscopic image pair on a display device are disclosed. Particularly, some implementations include receiving a first image and a second image, determining a vertical disparity between the first image and the second images, and displaying a stereoscopic image pair if the vertical disparity is below a threshold. Some implementations provide for correcting the vertical disparity by generating at least one corrected image, and generating the stereoscopic image pair based on the corrected image. Some implementations may evaluate the quality of the stereoscopic image pair, and display either a two dimensional image or the stereoscopic image pair based on the evaluation.
摘要:
A method and apparatus for capturing a stereoscopic image pair uses a working memory to store dynamic data created during the capture process by capturing a first image through an image and sensor, capturing a second image through the imaging sensor, determining a vertical and a horizontal disparity between the first image and second image, determining a geometric distortion between the first image and second image, determining a convergence point between the first image and second image and applying a correction for at least one of the vertical disparity horizontal disparity, the geometric distortion and the convergence point to at least the first image or the second image to create a stereoscopic image pair comprising at least one corrected image which is subsequently stored in a data source separate from the working memory.
摘要:
Techniques are described for dynamic automatic exposure compensation within image capture devices. The techniques include dynamically adjusting a default target brightness for a scene to compensate an exposure value (EV) selected by an automatic exposure process. A sensor array obtains light information from the scene at a default target brightness and an image capture controller calculates brightness values of a plurality of regions in the scene based on the light information. An automatic exposure compensation module dynamically adjusts the default target brightness based on the brightness values for the plurality of regions in the scene and threshold values set for the sensor array to set an adjusted target brightness. The sensor array may then capture an image frame of the scene using an EV for the adjusted target brightness. The techniques also include building a hysteresis zone to substantially stabilize the adjusted target brightness over a sequence of image scenes.
摘要:
Described herein are methods, apparatus, and computer readable medium to autofocus a lens of an imaging device. Parameters are received indicating a lens position. Lens actuator characteristics are determined. Lens damping parameters may be determined based, at least in part, on the input parameters and the lens actuator characteristics. In some aspects, lens damping parameters include a lens movement step size and a time delay between each step. In some aspects, the lens damping parameters include damping parameters for a plurality of regions of lens movement. Lens movement parameters are determined based, at least in part, on the input parameters and the lens damping parameters. The lens is then autofocused by moving it according to the lens movement parameters.
摘要:
An example image capture device determines a region of interest using a first image captured while a light source is powered off and a second image captured while a light source is powered on and uses the region of interest to automatically set configurations. In one example, an image capture device includes a controlled light source, an image sensor configured to capture images, and a processing unit configured to cause the image sensor to capture a first image of a scene while the controlled light source is powered off, cause the image sensor to capture a second image of the scene while the controlled light source is powered on, calculate luminance differences between a plurality of regions in the first image and a plurality of collocated regions in the second image, and determine that a region of interest includes those regions for which the luminance differences exceed a threshold.
摘要:
Methods and apparatuses are provided that may be implemented in and/or with a mobile device to allow gesture based remote control of one or more controllable devices.
摘要:
Systems and methods to improve the white balance of a high dynamic range image are disclosed. In a particular embodiment, an imaging device includes a camera sensor and a processor, the processor configured to capture a lighter image and a darker image of a scene. The processor is then configured to white balance the lighter image based on the lighter regions of the image, and to white balance the darker image based on the darker regions of the image. The two images can then be combined to produce a final image.