摘要:
In a semiconductor device including a super junction structure that p-type columns and n-type columns are periodically arranged, a depth of a p-type column region in a cell region that a semiconductor element is formed is made shallower than a depth of a p-type column region in an intermediate region which surrounds the cell region. Thereby, a breakdown voltage of the cell region becomes lower than a breakdown voltage of the intermediate region. An avalanche breakdown phenomenon is caused to occur preferentially in the cell region in which even when an avalanche current is generated, the current is dispersed and smoothly flows. Thereby, it is possible to avoid local current constriction and breakage incidental thereto and consequently it becomes possible to improve avalanche resistance (an avalanche current amount with which a semiconductor device comes to be broken).
摘要:
In a vertical power MOSFET having a superjunction structure, the withstand voltage of the power MOSFET can be ensured even if the aspect ratios of an n-type column region and a p-type column region are increased so as to vary the impurity concentration of the p-type column region. P-type semiconductor regions PR1 are formed on the sides of an n-type column NC1 adjacent to a p-type column region PC1. In this configuration, the p-type semiconductor region PR1 is formed from the upper end of the n-type column region NC1 to about a half depth of a height from the upper end to the lower end of the side of the n-type column region NC1. This inclines the sides of the overall p-type column region including the p-type semiconductor regions PR1 and the p-type column region PC1.
摘要:
Properties of a semiconductor device are improved. A semiconductor device having a superjunction structure, in which p-type column regions and n-type column regions are periodically arranged, is configured as follows. Each n-type column region has a vertical section including an n-type epitaxial layer located between trenches and a tapered embedded n-type epitaxial film disposed on a side face of the trench. Each p-type column region includes an embedded p-type epitaxial film disposed within the trench. The tapered embedded n-type epitaxial film is thus provided on the sidewall of the trench in which the p-type column region is to be disposed, thereby the p-type column region is allowed to have an inverted trapezoidal shape, leading to an increase in margin for a variation in concentration of a p-type impurity in the p-type column region. On resistance can be reduced by lateral diffusion of an n-type impurity (for example, As).