摘要:
A process device (10, 100) providing total fluid flow control is provided. The device (10, 100) includes a closure mechanism (12, 106) disposed in a flow conduit (16, 104) . The closure mechanism (12, 106), which is preferably an iris-type diaphragm, provides a variable internal diameter. The device (10, 100) includes a differential pressure sensor (20, 22; 120, 122) for sensing the differential pressure on opposite sides of the diaphragm. A controller (112) receives an indication of differential pressure and generates a control signal to an actuator that actuates the closure mechanism (12, 106). The closure mechanism (12, 106), differential pressure sensor (20, 22; 120, 122) and controller (112) create a closed-loop flow controller in a single process device (10, 100).
摘要:
A coplanar process fluid pressure sensor module is provided. The module includes a coplanar base and a housing body. The coplanar base has a pair of process fluid pressure inlets, each having an isolator diaphragm. The housing body is coupled to the coplanar base at an interface between the coplanar base and the housing body. A differential pressure sensor is operably coupled to the pair of process fluid pressure inlets, and is disposed proximate the coplanar base within the housing body.
摘要:
A process variable transmitter for measuring a pressure of a process fluid includes a process coupling having a first port configured to couple to a first process pressure and a second port configured to couple to a second process pressure. A differential pressure sensor is coupled to the first and second ports and provides an output related to a differential pressure between the first pressure and the second pressure. First and second pressure sensors couple to the respective first and second ports and provide outputs related to the first and second pressures. Transmitter circuitry is configured to provide a transmitter output based upon the output from the differential pressure sensor and/or the first and/or second pressure sensors. Additional functionality is provided by the transmitter using the sensed first and/or second pressures.
摘要:
A pressure sensor (56) includes a sensor (98) which is arranged to couple to a process pressure. A quartz crystal is coupled to the sensor (98) and is configured to measure pressure of fluid in a sensor body (93). An output from the quartz crystal is related to pressure applied to the sensor body (93) by the process pressure.
摘要:
A pressure sensor (56) includes a fill tube (93) which is arranged to couple to a process pressure. A sensor (98) is coupled to the fill tube (93) and is configured to measure pressure of fluid in the fill tube (93) as a function of a change of a physical property of the fill tube (93). Circuitry (74) is provided to measure pressure based upon the change of the physical property of the fill tube (93).
摘要:
In a particular embodiment, a process device includes a fluid disruption generation element to generate a fluid disruption within process fluid flowing through a pipe associated with an industrial process and a process variable sensor coupled to the disruption generation element to measure a process parameter. The process device further includes a power generation element adapted to generate an electrical output signal in response to the fluid disruption and a power storage component coupled to the power generation element. The power storage component is adapted to accumulate a charge based on the electrical output signal.
摘要:
A process transmitter for measuring a process variable in an industrial process comprises a sensor module, a heating device and transmitter circuitry. The sensor module has a sensor for sensing a process variable of an industrial process and generating a sensor signal. The heating device is connected to the sensor module for generating a heat pulse to influence generation of the sensor signal. The transmitter circuitry is connected to the sensor and the heating device. The transmitter circuitry verifies operation of the sensor by measuring a change in the sensor signal due to the heat pulse. In one embodiment of the invention, the heat pulse thermally expands a volume of a fill fluid within the process transmitter. In another embodiment, the heat pulse changes a physical property, such as dielectric, of a fill fluid within the process transmitter.
摘要:
An instrument loop adapter (131; 200; 300; 330; 350; 360; 380; 400; 500) includes an interface portion (140) that is configured to couple to a header (106) of a miniature process variable transmitter (100; 132). In some embodiments, the interface portion (140) includes a standardized cable output portion (202). In other embodiments, a cable portion (141) is coupled to the interface portion. Additional functionality is provided in the interface portion (140), the cable portion (141) or both portions. The additional functionality can include circuits that provide features not present in the process variable transmitter (100; 132).