Abstract:
An integrated circuit having a normal operating mode and a special operating mode, such as a special test mode, is disclosed. The special test mode is enabled by a series of signals, such as overvoltage excursions at a terminal, rather than by a single such excursion, so that it is less likely that the special test mode is entered inadvertently, such as due to noise or power-down and power-up of the device. The circuit for enabling the test mode includes a series of D-type flip-flops, each of which are clocked upon detection of the overvoltage condition together with a particular logic level applied at another terminal; multiple series of flip-flops may be provided for multiple special test modes. In addition, sequential codes may be used for further security. Logic for evaluating both a sequence of codes received in parallel from a number of address terminals, and also a sequence of serial codes received at single address terminal, are disclosed. Additional features include the provision of a power-on reset circuit which locks out the entry into the test mode during power-up of the device. Acknowledgment of the entry into test mode is provided by the presentation of a low impedance at output terminals while the device is not enabled; chip enable of the device causes the device to exit the test mode. Once in test mode, the output enable terminal of the device can provide a chip enable function.
Abstract:
An integrated circuit having a normal operating mode and a special operating mode, such as a special test mode, is disclosed. The special test mode is enabled by a series of signals, such as overvoltage excursions at a terminal, rather than by a single such excursion, so that it is less likely that the special test mode is entered inadvertently, such as due to noise or power-down and power-up of the device. The circuit for enabling the test mode includes a series of D-type flip-flops, each of which are clocked upon detection of the overvoltage condition together with a particular logic level applied at another terminal; multiple series of flip-flops may be provided for multiple special test modes. In addition, sequential codes may be used for further security. Logic for evaluating both a sequence of codes received in parallel from a number of address terminals, and also a sequence of serial codes received at single address terminal, are disclosed. Additional features include the provision of a power-on reset circuit which locks out the entry into the test mode during power-up of the device. Acknowledgment of the entry into test mode is provided by the presentation of a low impedance at output terminals while the device is not enabled; chip enable of the device causes the device to exit the test mode. Once in test mode, the output enable terminal of the device can provide a chip enable function.
Abstract:
An integrated circuit memory is disclosed which has a parallel test read mode. The memory includes comparators for comparing multiple data words, on a bit-by-bit basis, during the parallel read mode, with the result of the comparison used to enable or disable the output buffers. In test mode, in the event of a failed parallel test comparison, the comparator causes the output buffers to go into a high-impedance state; for a passing parallel test, the actual data state is presented by the output terminals. The comparison circuitry is in parallel with the output data path, so that the output data path is not adversely affected by the test circuitry, and so that the access time in test mode is the same as the access time during normal operation (assuming a passing test). The technique may be adapted to wide parallel test schemes.
Abstract:
An integrated circuit having a normal operating mode and a special operating mode, such as a special test mode, is disclosed. The special test mode is enabled by a series of signals, such as overvoltage excursions at a terminal, rather than by a single such excursion, so that it is less likely that the special test mode is entered inadvertently, such as due to noise or power-down and power-up of the device. The circuit for enabling the test mode includes a series of D-type flip-flops, each of which are clocked upon detection of the overvoltage condition together with a particular logic level applied at another terminal; multiple series of flip-flops may be provided for multiple special test modes. Additional features include the provision of a power-on reset circuit which locks out the entry into the test mode during power-up of the device. Acknowledgment of the entry into test mode is provided by the presentation of a low impedance at output terminals while the device is not enabled ; chip enable of the device causes the device to exit the test mode. Once in test mode, the output enable terminal of the device can provide a chip enable function.
Abstract:
An integrated circuit having a normal operating mode and a special operating mode, such as a special test mode, is disclosed. The special test mode is enabled by a series of signals, such as overvoltage excursions at a terminal, rather than by a single such excursion, so that it is less likely that the special test mode is entered inadvertently, such as due to noise or power-down and power-up of the device. The circuit for enabling the test mode includes a series of D-type flip-flops, each of which are clocked upon detection of the overvoltage condition together with a particular logic level applied at another terminal; multiple series of flip-flops may be provided for multiple special test modes. Additional features include the provision of a power-on reset circuit which locks out the entry into the test mode during power-up of the device. Acknowledgment of the entry into test mode is provided by the presentation of a low impedance at output terminals while the device is not enabled ; chip enable of the device causes the device to exit the test mode. Once in test mode, the output enable terminal of the device can provide a chip enable function.
Abstract:
An integrated circuit memory is disclosed which includes redundant columns associated with a sub-array, and in which multiple input/output terminals are placed in communication with multiple columns in the sub-array in read and write cycles. The number of redundant columns per sub-array is less than the number of input/output terminals. A multiplexer connects the selected redundant column to a selected sense amplifier and write circuit for the input/output with which the replaced column was associated. The multiplexer includes pass gates connected to the bit lines of the redundant column, and fuses connected between each of the pass gates and each of the sense/write circuits selectable for the redundant column. Those of the fuses which are not associated with the selected input/output are opened, and the fuses associated with the selected input/output are left intact. Precharge transistors are connected to the fuse sides of the pass gates, for precharging each of the floating nodes after the pass gates are turned off. This precharging negates the effect of any charge which may be trapped on the fuse side of the pass gates for those lines where the fuses are opened, so that the access time for the next cycle will not be degraded.
Abstract:
An integrated circuit memory is disclosed which includes redundant columns associated with a sub-array, and in which multiple input/output terminals are placed in communication with multiple columns in the sub-array in read and write cycles. The number of redundant columns per sub-array is less than the number of input/output terminals. A multiplexer connects the selected redundant column to a selected sense amplifier and write circuit for the input/output with which the replaced column was associated. The multiplexer includes pass gates connected to the bit lines of the redundant column, and fuses connected between each of the pass gates and each of the sense/write circuits selectable for the redundant column. Those of the fuses which are not associated with the selected input/output are opened, and the fuses associated with the selected input/output are left intact. Precharge transistors are connected to the fuse sides of the pass gates, for precharging each of the floating nodes after the pass gates are turned off. This precharging negates the effect of any charge which may be trapped on the fuse side of the pass gates for those lines where the fuses are opened, so that the access time for the next cycle will not be degraded.