摘要:
In a semiconductor laser made of nitride III-V compound semiconductors and having a ridge-shaped stripe, which is capable of stably controlling transverse modes to prevent high-order mode oscillation during high output power and excellent in heat dissipation, opposite sides of the ridge are buried by a buried semiconductor layer such as AlGaN buried layer made of a nitride III-V compound semiconductor at least of which is a non-single crystal such as polycrystal. The buried semiconductor layer is grown under a growth temperature in the range from 520 °C to 760 °C.
摘要:
In a semiconductor laser made of nitride III-V compound semiconductors and having a ridge-shaped stripe, which is capable of stably controlling transverse modes to prevent high-order mode oscillation during high output power and excellent in heat dissipation, opposite sides of the ridge are buried by a buried semiconductor layer such as AlGaN buried layer made of a nitride III-V compound semiconductor at least of which is a non-single crystal such as polycrystal. The buried semiconductor layer is grown under a growth temperature in the range from 520 °C to 760 °C.
摘要:
A semiconductor light emitting device comprises: a compound semiconductor substrate; an n-type cladding layer on the compound semiconductor substrate; an active layer on the n-type cladding layer; a p-type cladding layer on the active layer: and a p-type contact layer on the p-type cladding layer, the n-type cladding layer, the active layer, the p-type cladding layer and the p-type contact layer being made of II-VI compound semiconductors containing at least one of group II elements selected from the group consisting of Zn, Cd, Mg, Hg and Be and at least one of group VI elements selected from the group consisting of S, Se, Te and O, characterized in that at least the active layer has undulations and at least the p-type layer is flat. A method for manufacturing a semiconductor light emitting device having: a compound semiconductor substrate; an n-type cladding layer on the compound semiconductor substrate; an active layer on the n-type cladding layer; and a p-type cladding layer on the active layer, the n-type cladding layer, the active layer and the p-type cladding layer being made of II-VI compound semiconductors containing at least one of group II elements selected from the group consisting of Zn, Cd, Mg, Hg and Be and at least one of group VI elements selected from the group consisting of S, Se, Te and O, characterized in that the n-type cladding layer, the active layer and said p-type cladding layer are grown by varying, for the respective layers, the ratio of the molecular beam intensity of the group VI element relative to the molecular beam intensity of the group II element.
摘要:
A semiconductor light emitting device comprises: a compound semiconductor substrate; an n-type cladding layer on the compound semiconductor substrate; an active layer on the n-type cladding layer; a p-type cladding layer on the active layer: and a p-type contact layer on the p-type cladding layer, the n-type cladding layer, the active layer, the p-type cladding layer and the p-type contact layer being made of II-VI compound semiconductors containing at least one of group II elements selected from the group consisting of Zn, Cd, Mg, Hg and Be and at least one of group VI elements selected from the group consisting of S, Se, Te and O, characterized in that at least the active layer has undulations and at least the p-type layer is flat. A method for manufacturing a semiconductor light emitting device having: a compound semiconductor substrate; an n-type cladding layer on the compound semiconductor substrate; an active layer on the n-type cladding layer; and a p-type cladding layer on the active layer, the n-type cladding layer, the active layer and the p-type cladding layer being made of II-VI compound semiconductors containing at least one of group II elements selected from the group consisting of Zn, Cd, Mg, Hg and Be and at least one of group VI elements selected from the group consisting of S, Se, Te and O, characterized in that the n-type cladding layer, the active layer and said p-type cladding layer are grown by varying, for the respective layers, the ratio of the molecular beam intensity of the group VI element relative to the molecular beam intensity of the group II element.