摘要:
A memory device (100) including a plurality of memory cells (M h,k ), a plurality of insulated first regions (220 h ) of a first type of conductivity formed in a chip of semiconductor material (203), at least one second region (230 k ) of a second type of conductivity formed in each first region, a junction between each second region and the corresponding first region defining a unidirectional conduction access element (D h,k ) for selecting a corresponding memory cell connected to the second region when forward biased, and at least one contact (225 h ) for contacting each first region; a plurality of access elements are formed in each first region, the access elements being grouped into at least one sub-set consisting of a plurality of adjacent access elements (D h,k ,D h,k+1 ) without interposition of any contact, and the memory device further includes means (110c,113,125) for forward biasing the access elements of each sub-set simultaneously.
摘要:
A cell array (1) is formed by a plurality of cells (2) including each a selection bipolar transistor (4) and a storage component (3). The cell array is formed in a body (10) including a common collector region (11) of P type; a plurality of base regions (12) of N type, overlying the common collector region (11); a plurality of emitter regions (14) of P type formed in the base regions; and a plurality of base contact regions (15) of N type and a higher doping level than the base regions, formed in the base regions (12; 42), wherein each base region (12) is shared by at least two adjacent bipolar transistors (20).
摘要:
A memory device (20) of a phase change type, wherein a memory cell (2) has a memory element (3) of calcogenic material switcheable between at least two phases associated with two different states of the memory cell. A write stage (24) is connected to the memory cell and has a capacitive circuit (35) configured to generate a discharge current used as write current having no constant portion and causing the memory cell (2) to change state.
摘要:
A memory device (100) including a plurality of memory cells (M h,k ), a plurality of insulated first regions (220 h ) of a first type of conductivity formed in a chip of semiconductor material (203), at least one second region (230 k ) of a second type of conductivity formed in each first region, a junction between each second region and the corresponding first region defining a unidirectional conduction access element (D h,k ) for selecting a corresponding memory cell connected to the second region when forward biased, and at least one contact (225 h ) for contacting each first region; a plurality of access elements are formed in each first region, the access elements being grouped into at least one sub-set consisting of a plurality of adjacent access elements (D h,k ,D h,k+1 ) without interposition of any contact, and the memory device further includes means (110c,113,125) for forward biasing the access elements of each sub-set simultaneously.
摘要:
An electronic semiconductor device has a sublithographic contact area (45, 58) between a first conductive region (22) and a second conductive region (38). The first conductive region (22) is cup-shaped and has vertical walls which extend, in top plan view, along a closed line of elongated shape. One of the walls of the first conductive region forms a first thin portion and has a first dimension in a first direction. The second conductive region (38) has a second thin portion (38a) having a second sublithographic dimension in a second direction (X) transverse to the first dimension. The first and the second conductive regions are in direct electrical contact at their thin portions and form the sublithographic contact area (45, 58). The elongated shape is chosen between rectangular and oval elongated in the first direction. Thereby, the dimensions of the contact area remain approximately constant even in presence of a small misalignment between the masks defining the conductive regions.
摘要:
A memory cell (2) integrated in a semiconductor substrate (3) and comprised of a MOS device (4) connected in series to a capacitive element (5), wherein
the MOS device (4) has first and second conduction terminals (6), the capacitive element (5) has a lower electrode (16) covered with a layer (17) of a dielectric material and coupled capacitively to an upper electrode (18), said MOS device (4) is overlaid by at least one metallization layer (10,13), which metallization layer (10,13) is covered with at least one top insulating layer (11,14), that the capacitive element (5) is formed on the top insulating layer (11,14), and that said metallization layer (10,13) extends only between said MOS device (4) and said capacitive element (5).