摘要:
A near-infrared absorber includes a compound represented by Chemical Formula 1. A near-infrared absorbing/blocking film, a photoelectric device, an organic sensor, and an electronic device may include the near-infrared absorber.
In Chemical Formula 1, Ar, Ar 1 , Ar 2 , Ar 3 , Ar 4 , X 1 , X 2 , L 1 , L 2 , R 1 , and R 2 are the same as defined in the detailed description.
摘要:
An image sensor includes a plurality of pixels, each pixel including a light sensing structure including first, second and third light sensing elements sequentially stacked on a substrate, the light sensing structure having a first surface adjacent to a readout circuit and a second surface including a light receiving portion between first and second circumferential portions, a first through via on the first circumferential portion, extending from the first surface to connect with the first light sensing element, and configured to transfer charges of the first light sensing element to the readout circuit, and a vertical transfer gate on a second circumferential portion and configured to transfer charges of the second light sensing element to the readout circuit, the first through via and the vertical transfer gate of each pixel being arranged in a 1-shaped or L-shaped pattern in the first and second circumferential portions.
摘要:
An image sensor includes a plurality of pixels, each pixel including a light sensing structure including first, second and third light sensing elements sequentially stacked on a substrate, the light sensing structure having a first surface adjacent to a readout circuit and a second surface including a light receiving portion between first and second circumferential portions, a first through via on the first circumferential portion, extending from the first surface to connect with the first light sensing element, and configured to transfer charges of the first light sensing element to the readout circuit, and a vertical transfer gate on a second circumferential portion and configured to transfer charges of the second light sensing element to the readout circuit, the first through via and the vertical transfer gate of each pixel being arranged in a 1-shaped or L-shaped pattern in the first and second circumferential portions.
摘要:
An organic photoelectronic device includes a first electrode and a second electrode facing each other and a light-absorption layer between the first electrode and the second electrode and including a photoelectric conversion region including a p-type light-absorbing material and an n-type light-absorbing material and a doped region including an exciton quencher and at least one of the p-type light-absorbing material and the n-type light-absorbing material, wherein at least one of the p-type light-absorbing material and the n-type light-absorbing material selectively absorbs a part of visible light , and an image sensor includes the same.
摘要:
An organic photoelectronic device includes an anode (10) and a cathode (20) facing each other, a light-absorption layer (30) between the anode and the cathode, and a first auxiliary layer (40) between the cathode and the light-absorption layer, the first auxiliary layer having an energy bandgap of about 3.0 eV to about 4.5 eV, and a difference between a work function of the cathode and a highest occupied molecular orbital (HOMO) energy level of the first auxiliary layer is about 1.5 eV to about 2.0 eV.
摘要:
A photoelectric diode includes a first electrode and a second electrode facing each other; a photoelectric conversion layer between the first electrode and the second electrode, and a compensation layer on the photoelectric conversion layer, the compensation layer being configured to compensate absorption and reflection of light. The photoelectric conversion layer is associated with a first optical spectrum having a light-absorption peak at a first wavelength and a reflection peak at a second wavelength, the first wavelength and the second wavelength both within a wavelength region of about 750 nm to about 1200 nm. The photoelectric diode is associated with a second optical spectrum having a light-absorption peak at a third wavelength, the third wavelength is within the wavelength region of about 750 nm to about 1200 nm, the third wavelength different from the first wavelength.
摘要:
Disclosed are an organic photoelectric device including a first electrode and a second electrode facing each other and a photoelectric conversion layer disposed between the first electrode and the second electrode and selectively absorbing light in a green wavelength region, wherein the photoelectric conversion layer includes at least one first photoelectric conversion material having a peak absorption wavelength (λ max1 ) of less than about 540 nm and a at least one second photoelectric conversion material having a peak absorption wavelength (λ max2 ) of greater than or equal to about 540 nm, and an image sensor, and an electronic device.
摘要:
An image sensor includes a semiconductor substrate including a plurality of photo-sensing devices, a photoelectric conversion device disposed on the semiconductor substrate and absorbing the mixed light of a first color and a second color, and a color filter disposed on the photoelectric conversion device and configured to selectively transmit a mixed light including a third color and at least one of the first color and the second color, and an electronic device including the image sensor is provided.
摘要:
An OLED panel for implementing biometric recognition influencing an aperture ratio of an OLED light emitter i includes a substrate, an OLED on the substrate, and a driver on the substrate. The OLED may emit visible light, and the driver may drive the OLED. The driver may include a visible light sensor configured to detect the visible light emitted by the OLED, and the visible light sensor may overlap the OLED in a direction that is substantially perpendicular to an upper surface of the substrate. The OLED panel may include a near infrared ray OLED that is configured to emit near infrared rays, and the driver may include a near infrared ray sensor configured to detect near infrared rays emitted by the near infrared ray OLED. The near infrared ray sensor may overlap the OLED in a direction that is substantially perpendicular to an upper surface of the substrate.