摘要:
The present invention provides a method for producing semiconductor-grade high-purity polycrystalline silicon in a closed system, the method comprising recovering chlorosilane contained in reaction exhaust gas and circulating the recovered chlorosilane to resupply and reuse the recovered chlorosilane for polycrystalline silicon deposition reaction without discharging the recovered chlorosilane out of the system. The present invention employs a process design including: step D of obtaining chlorosilane with a reduced impurity content from recovered chlorosilane fractionated in step C; and a step of supplying the chlorosilane with a reduced impurity content, which is obtained in the step D, to step A which is a step of depositing polycrystalline silicon. The employment of this process design allows a process for producing semiconductor-grade high-purity polycrystalline silicon to accomplish removal of impurity compounds which would otherwise accumulate in recovered chlorosilane circulating in a deposition reaction system and thus to yield polycrystalline silicon of stable quality.
摘要:
The present invention provides a method for producing semiconductor-grade high-purity polycrystalline silicon in a closed system, the method comprising recovering chlorosilane contained in reaction exhaust gas and circulating the recovered chlorosilane to resupply and reuse the recovered chlorosilane for polycrystalline silicon deposition reaction without discharging the recovered chlorosilane out of the system. The present invention employs a process design including: step D of obtaining chlorosilane with a reduced impurity content from recovered chlorosilane fractionated in step C; and a step of supplying the chlorosilane with a reduced impurity content, which is obtained in the step D, to step A which is a step of depositing polycrystalline silicon. The employment of this process design allows a process for producing semiconductor-grade high-purity polycrystalline silicon to accomplish removal of impurity compounds which would otherwise accumulate in recovered chlorosilane circulating in a deposition reaction system and thus to yield polycrystalline silicon of stable quality.
摘要:
The present invention provides a technique which allows stable use of an ion-exchange resin for removing boron impurities over a long period of time in the purification step of a silane compound or a chlorosilane compound. In the present invention, a weakly basic ion-exchange resin used for the purification of a silane compound and a chlorosilane compound is cleaned with a gas containing hydrogen chloride. When this cleaning treatment is used for the initial activation of the weakly basic ion-exchange resin, a higher impurity-adsorbing capacity can be obtained. Further, use of the cleaning treatment for the regeneration of the weakly basic ion-exchange resin allows stable use of the ion-exchange resin for a long time. This allows reduction in the amount of the resin used in a long-term operation and reduction in the cost of used resin disposal.
摘要:
First, at least one of silanol and a siloxane compound is generated in a chlorosilane (S101). In the step, for example, an inert gas having a moisture concentration of 0.5 to 2.5 ppm is brought into contact with the chlorosilane to dissolve the moisture, and at least one of silanol and a siloxane compound is generated through a hydration reaction of a moiety of the chlorosilane. Next, a boron-containing compound contained in the chlorosilane is reacted with the silanol or the siloxane compound, thereby converting the boron-containing compound to a boron oxide (S102). Through the step (S102), the boron-containing compound being a low boiling point compound is converted to a boron oxide being a high boiling point compound, and therefore the difference in boiling point from the boiling point of chlorosilane becomes larger to make later separation easy.
摘要:
The present invention provides a technique which allows stable use of an ion-exchange resin for removing boron impurities over a long period of time in the purification step of a silane compound or a chlorosilane compound. In the present invention, a weakly basic ion-exchange resin used for the purification of a silane compound and a chlorosilane compound is cleaned with a gas containing hydrogen chloride. When this cleaning treatment is used for the initial activation of the weakly basic ion-exchange resin, a higher impurity-adsorbing capacity can be obtained. Further, use of the cleaning treatment for the regeneration of the weakly basic ion-exchange resin allows stable use of the ion-exchange resin for a long time. This allows reduction in the amount of the resin used in a long-term operation and reduction in the cost of used resin disposal.
摘要:
In a step of performing cylindrical grinding of a polycrystalline silicon bar 10 grown by a Siemens method, this cylindrical grinding step is performed such that a polycrystalline silicon rod 30, whose center axis C R is shifted from a center axis C 0 of a silicon core wire 20 by 2 mm or more, is manufactured.
摘要:
Provided is a polycrystalline silicon rod suitable as a raw material for production of single-crystalline silicon. A crystal piece (evaluation sample) is collected from a polycrystalline silicon rod grown by a Siemens method, and a polycrystalline silicon rod in which an area ratio of a crystal grain having a particle size of 100 nm or less is 3% or more is sorted out as the raw material for production of single-crystalline silicon. When single-crystalline silicon is grown by an FZ method using the polycrystalline silicon rod as a raw material, the occurrence of dislocation is remarkably suppressed.
摘要:
In order to produce high-purity trichlorosilane by removing methyldichlorosilane from a mixture (S) containing methyldichlorosilane (CH 3 HSiCl 2 ), tetrachlorosilane (SiCl 4 ), and trichlorosilane (HSiCl 3 ) in the method for producing trichlorosilane of the present invention, a procedure is employed in which chlorine atoms are redistributed between methyldichlorosilane and tetrachlorosilane through catalytic treatment for conversion into trichlorosilane and methyltrichlorosilane (CH 3 SiCl 3 ). Methyldichlorosilane (boiling point: 41 °C) having a boiling point close to that of trichlorosilane (boiling point: 32°C) to be purified is converted into methyltrichlorosilane (boiling point: 66°C) having a higher boiling point through redistribution of chlorine atoms between methyldichlorosilane and tetrachlorosilane, achieving easy removal of impurities.