摘要:
Provided is a substrate for a solar cell, wherein a flat chamfered portion is formed on one corner of a silicon substrate having a square shape in a planar view, or a notch is formed on the corner or close to the corner. This invention makes it possible to easily check the position of the substrate and determine the direction of the substrate in a solar cell manufacturing step, and suppresses failures generated due to the direction of the substrate.
摘要:
Disclosed is a phosphorus paste for diffusion that is used in continuous printing of a phosphorus paste for diffusion on a substrate by screen printing. The phosphorus paste for diffusion does not undergo a significant influence of ambient humidity on viscosity and has no possibility of thickening even after a large number of times of continuous printing. The phosphorus paste for diffusion is coated on a substrate by screen printing for diffusion layer formation on the substrate. The phosphorus paste for diffusion includes a doping agent containing phosphorus as a dopant for the diffusion layer, a thixotropic agent containing an organic binder and a solid matter, and an organic solvent. The doping agent is an organic phosphorus compound.
摘要:
Disclosed is a firing furnace for firing an electrode of a solar cell element, which is provided with: a transfer member, which transfers a substrate having a conductive paste applied thereto; a heating section, which heats the substrate and fires the conductive paste; and a cooling section, which cools the heated substrate. The furnace is also provided with a heating means for heating the transfer member. Specifically, at the time of firing the electrode paste using the wire-type firing furnace, since a wire is fired at a temperature substantially equivalent to the ambient temperature of the heating section, deterioration of yield due to having the electrode damaged by a deposited material of the metal component of the conductive paste is suppressed, said deposited material being deposited on the wire, and the wire-type firing furnace can be continuously used.
摘要:
The present invention is a solar cell including: a first conductivity type diffusion layer and a second conductivity type diffusion layer which are formed on a backside of a light-receiving surface of a substrate, a first electrode portion, a second electrode portion, a first electrode line portion, a second electrode line portion, a first electrode bus bar portion, and a second electrode bus bar portion; a first insulator film which is formed so as to cover a side portion and a top of the second electrode portion in an intersection region of the second electrode portion and the first electrode bus bar portion, a second insulator film which is formed so as to cover a side portion and a top of the first electrode portion in an intersection region of the first electrode portion and the second electrode bus bar portion, wherein the second electrode portion is formed continuously in a line shape under the first insulator film, and the first electrode portion is formed continuously in a line shape under the second insulator film. This provides a back surface electrode-type solar cell with low wiring resistance and high conversion efficiency, and a method for producing a solar cell which can produce such a back surface electrode-type solar cell at low cost.
摘要:
Disclosed is a phosphorus paste for diffusion that is used in continuous printing of a phosphorus paste for diffusion on a substrate by screen printing. The phosphorus paste for diffusion does not undergo a significant influence of ambient humidity on viscosity and has no possibility of thickening even after a large number of times of continuous printing. The phosphorus paste for diffusion is coated on a substrate by screen printing for diffusion layer formation on the substrate. The phosphorus paste for diffusion includes a doping agent containing phosphorus as a dopant for the diffusion layer, a thixotropic agent containing an organic binder and a solid matter, and an organic solvent. The doping agent is an organic phosphorus compound.
摘要:
Disclosed is a solar cell which is provided with: a semiconductor substrate having a light-receiving surface and a non-light-receiving surface; a PN junction section formed on the semiconductor substrate; a passivation layer formed on the light-receiving surface and/or the non-light-receiving surface; and power extraction electrodes formed on the light-receiving surface and the non-light-receiving surface. The solar cell is characterized in that the passivation layer includes an aluminum oxide film having a thickness off 40 nm or less. As a result of forming an aluminum oxide film having a predetermined thickness on the surface of the substrate, it is possible to achieve excellent passivation performance and excellent electrical contact between silicon and the electrode by merely firing the conductive paste, which is conventional technology. Furthermore, an annealing step, which has been necessary to achieve the passivation effects of the aluminum oxide film in the past, can be eliminated, thus dramatically reducing costs.
摘要:
Disclosed is a solar cell which is provided with: a semiconductor substrate having a light-receiving surface and a non-light-receiving surface; a PN junction section formed on the semiconductor substrate; a passivation layer formed on the light-receiving surface and/or the non-light-receiving surface; and power extraction electrodes formed on the light-receiving surface and the non-light-receiving surface. The solar cell is characterized in that the passivation layer includes an aluminum oxide film having a thickness off 40 nm or less. As a result of forming an aluminum oxide film having a predetermined thickness on the surface of the substrate, it is possible to achieve excellent passivation performance and excellent electrical contact between silicon and the electrode by merely firing the conductive paste, which is conventional technology. Furthermore, an annealing step, which has been necessary to achieve the passivation effects of the aluminum oxide film in the past, can be eliminated, thus dramatically reducing costs.
摘要:
The present invention is a solar cell having a P-type silicon substrate in which one main surface is a light-receiving surface and another main surface is a backside, a plurality of back surface electrodes formed on a part of the backside, an N-type layer in at least a part of the light-receiving surface of the P-type silicon substrate, and contact areas in which the P-type silicon substrate is in contact with the back surface electrodes; wherein the P-type silicon substrate is a silicon substrate doped with gallium; the P-type silicon substrate has a resistivity of 2.5 Ω·cm or less; and a back surface electrode pitch P rm [mm] of the plurality of back surface electrodes and the resistivity R sub [Ω·cm] of the P-type silicon substrate satisfy the relation represented by the following formula (1). This provides a solar cell and a solar cell module having excellent conversion efficiency with the resistance loss being prevented, with the solar cell using a substrate the light-induced degradation of which is eliminated. log R sub ≤ − log P rm + 1.0
摘要:
The present invention is a solar cell having a P-type silicon substrate in which one main surface is a light-receiving surface and another main surface is a backside, a dielectric film on the backside, and an N-conductivity type layer in at least a part of the light-receiving surface of the P-type silicon substrate, wherein the P-type silicon substrate is a silicon substrate doped with gallium, and the backside of the P-type silicon substrate contains a diffused group III element. This provides a solar cell with excellent conversion efficiency provided with a gallium-doped substrate, and a method for manufacturing the same.