Abstract:
Various disclosed aspects provide for protecting components (e.g., integrated circuits) from spurious electrical overvoltage events, such as electrostatic discharge. Embedded components with voltage switchable dielectric materials may protect circuits against electrostatic discharge.
Abstract:
Embodiments disclosed herein generally relate to structures, methods and devices employing a voltage switchable dielectric material to achieve vertical and/or dual switching protection against ESD and other overvoltage events.
Abstract:
Printed circuit boards including voltage switchable dielectric materials (VSDM) are disclosed. The VSDMs are used to protect electronic components, arranged on or embedded in printed circuit boards, against electric discharges, such as electrostatic discharges or electric overstresses. During an overvoltage event, a VSDM layer shunts excess currents to ground, thereby preventing electronic components from destruction or damage.
Abstract:
Ferroic circuit elements that include a set of conductive structures that are at least partially embedded within a ferroic medium are disclosed. The ferroic medium may be a voltage switched dielectric material that includes ferroic particles in accordance with various embodiments. A ferroic circuit element may be at least partially embedded within a substrate in accordance with embodiments of the current invention as an embedded ferroic circuit element. An embedded ferroic circuit element that is an inductor in accordance with embodiments of the current invention may be denoted as an embedded ferroic inductor. An embedded ferroic circuit element that is a capacitor in accordance with embodiments of the current invention may be denoted as an embedded ferroic capacitor.