摘要:
Some embodiments include memory devices having a wordline, a bitline, a memory element selectively configurable in one of three or more different resistive states, and a diode configured to allow a current to flow from the wordline through the memory element to the bitline responsive to a voltage being applied across the wordline and the bitline and to decrease the current if the voltage is increased or decreased. Some embodiments include memory devices having a wordline, a bitline, memory element selectively configurable in one of two or more different resistive states, a first diode configured to inhibit a first current from flowing from the bitline to the wordline responsive to a first voltage, and a second diode comprising a dielectric material and configured to allow a second current to flow from the wordline to the bitline responsive to a second voltage.
摘要:
A non-volatile storage element and a method of forming the storage element. The non-volatile storage element comprises: a first electrode including a first material having a first work function; a second electrode including a second material having a second work function higher than the first work function; a first dielectric disposed between the first electrode and the second electrode, the first dielectric having a first bandgap; a second dielectric disposed between the first dielectric and the second electrode, the second dielectric having a second bandgap wider than the first bandgap and being disposed such that a quantum well is created in the first dielectric; and a third dielectric disposed between the first electrode and the first dielectric, the third dielectric being thinner than the second dielectric and having a third bandgap wider than the first bandgap.
摘要:
The invention concerns a high efficiency energy source using quantum mechanics approach, a tunnelling battery (100) and comprises a metal or semiconductor plate, an injector or anode (3), a cathode (4) and a control plate (2), placed in parallel, wherein a thin dielectric layer (5) is placed between anode (3) and cathode (4) and a dielectric layer (6) is placed between cathode (4) and control plate (2). The tunneling battery (100) also comprises an anode terminal (7), electrically connected to anode plate (3), and a cathode terminal (8) of the tunneling battery is electrically connected with the cathode plate (4).
摘要:
Some embodiments include methods of forming diodes. A stack may be formed over a first conductive material. The stack may include, in ascending order, a sacrificial material, at least one dielectric material, and a second conductive material. Spacers may be formed along opposing sidewalls of the stack, and then an entirety of the sacrificial material may be removed to leave a gap between the first conductive material and the at least one dielectric material. In some embodiments of forming diodes, a layer may be formed over a first conductive material, with the layer containing supports interspersed in sacrificial material. At least one dielectric material may be formed over the layer, and a second conductive material may be formed over the at least one dielectric material. An entirety of the sacrificial material may then be removed.
摘要:
Some embodiments include memory devices having a wordline, a bitline, a memory element selectively configurable in one of three or more different resistive states, and a diode configured to allow a current to flow from the wordline through the memory element to the bitline responsive to a voltage being applied across the wordline and the bitline and to decrease the current if the voltage is increased or decreased. Some embodiments include memory devices having a wordline, a bitline, memory element selectively configurable in one of two or more different resistive states, a first diode configured to inhibit a first current from flowing from the bitline to the wordline responsive to a first voltage, and a second diode comprising a dielectric material and configured to allow a second current to flow from the wordline to the bitline responsive to a second voltage.
摘要:
A detector (10A) for detecting electromagnetic radiation incident thereon over a desired range of frequencies exhibits a given responsivity and includes an output and first and second non-insulating layers (14), which layers are spaced apart such that a given voltage can be applied thereacross. The first non-insulating layer (12) is formed of a metal, and the first and second non-insulating layers are configured to form an antenna structure for receiving electromagnetic radiation over the desired range of frequencies. The detector further includes an arrangement disposed between the first and second non-insulating layers and configured to serve as a transport of electrons between the first and second non-insulating layers as a result of the electromagnetic radiation being received at the antenna structure. The arrangement includes at least a first layer of an amorphous material (16) such that the transport of electrons includes, at least in part, transport by means of resonant tunneling, and such that at least a portion of the electromagnetic radiation incident on the antenna is converted at the output to an electrical signal having an intensity which depends on the given responsivity.
摘要:
A method for forming a metal-insulator-metal device (24, 124, 224, 424) includes imprinting at least one first layer (620) to form a first depression (636), removing a portion of at least one second layer (610) through the first depression (636) to form a recess (640) in the at least one second layer (610) bordered by a first side (642), a first overhang (646) along the first side (642), a second opposite side (644) and a second overhang (648) along the second side (644). The method also includes depositing a first metal (452) in the recess (640) spaced from the first side (642) and the second side (644) and oxidizing the first metal (452) to create a non-linear dielectric (661).