摘要:
An interactive aircraft load management system automates calculation and provides simulation capability to changes in an aircraft CG. limit for display on a three-dimensional aircraft symbology. The aircraft load management system also communicates with a fly by wire (FBW) flight control system wherein the aircraft's control system is programmed to automatically compensate for CG. excursions and to alter control laws. The aircraft load management system also selectively reels-in and reels out sling lines as the aircraft pitches and rolls to maintain a load vector from a slung load along the aircraft centerline. Load vector travel is accomplished by coupling a winch control system into the flight control system.
摘要:
An unmanned aerial vehicle that includes a fuselage (12) with a partial toroidal forward portion, and an aft portion. A duct (18) is formed through the fuselage and extends from the top to the bottom of the fuselage. Two counter-rotating rotor assemblies (16) are mounted within the duct for providing downward thrust through the duct. The rotor assemblies are supported by a plurality of support struts (20). At least one engine is mounted within the fuselage and engages with the rotor assemblies. A pusher prop assembly (50) is amounted to the aft portion of the fuselage. The pusher prop assembly is designed to provide forward thrust along the longitudinal axis of the aircraft. The pusher prop assembly includes a drive shaft (58) that is engaged with the engine. A plurality of propellers (56) are attached to and rotated by the drive shaft. A shroud (54) is mounted to the aft portion of the fuselage around the propellers and is operative for channelling the air passing through the propellers in a substantially aft direction. A pair of wings (42) is removably attached to the sides of the fuselage. Each wing preferably includes a fixed portion and a pivotal flaperon portion hinged to the fixed portion. Directional vanes (60) are preferably mounted to the shroud downstream from the propellers and control flow out of the shroud. Deflectors may be mounted to the bottom of the fuselage across a portion of the duct to control flow of air into the duct.
摘要:
An aircraft load management system that determines the position of an aircraft cargo hook for display to an aircrew. The cargo hook positional information may alternatively or additionally be communicated directly to a flight control system and a winch control system to automate and coordinate flight control inputs with winch operation to actively position the cargo hook. Data transfer from the cargo through a data link system also provides the load management system with exact position of the cargo load connection points even prior to attachment of the cargo hook to the load. The load management system also includes anti-sway algorithms for active load stability inputs to the flight control system and to alter flight control laws and automatically compensate for CG. excursions.
摘要:
A method for reducing a nose-up pitching moment in an unmanned aerial vehicle (10) during forward flight. The unmanned aerial vehicle includes counter-rotating rotor assemblies (38, 40) that are mounted within a duct (18). Each rotor assembly (38, 40) includes a plurality of rotor blades. The method involves adjusting the rotor blades to have substantially zero pitch. Then rotating the rotor asemblies (38, 40) to produce a virtual plane (62) across the duct (18). The virtual plane (62) is operative for substantially deflecting air (70) passing over the fuselage (44) away from the duct (18). In one embodiment of the invention, the method involves the further step of obstructing at least a portion of the bottom of the duct (18) to inhibit air (70) that is flowing across the bottom of the duct from passing into the duct (18).
摘要:
A closeout structure for a rotor blade includes a first fluid channel for supplying a first pressure to a first port of a trailing edge (TE) device, a second fluid channel for supplying a second pressure to a second port of the TE de vice, and a trough disposed between the first fluid channel and the second fluid channel. The closeout structure forms a double-W shape.
摘要:
A method for reducing a nose-up pitching moment in an unmanned aerial vehicle (10) during forward flight. The unmanned aerial vehicle includes counter-rotating rotor assemblies (38, 40) that are mounted within a duct (18). Each rotor assembly (38, 40) includes a plurality of rotor blades. The method involves adjusting the rotor blades to have substantially zero pitch. Then rotating the rotor asemblies (38, 40) to produce a virtual plane (62) across the duct (18). The virtual plane (62) is operative for substantially deflecting air (70) passing over the fuselage (44) away from the duct (18). In one embodiment of the invention, the method involves the further step of obstructing at least a portion of the bottom of the duct (18) to inhibit air (70) that is flowing across the bottom of the duct from passing into the duct (18).