摘要:
Apparatus and methods for detecting, characterizing, and compensating motion-related error of moving micro-entities are described. Motion-related error may occur in streams of moving micro-entities, and may represent a deviation in and expected arrival time or an uncertainty in position of a micro-entity within the stream. Motion-related error of micro-entities is observed in a flow cytometer, e.g., as pulse jitter, and is found to have a functional dependence on a parameter of the system. The pulse jitter can be compensated, according to one embodiment, by adjusting data acquisition observation windows. For the flow cytometer, a reduction of pulse jitter can improve measurement accuracy, resolution of doublets, system throughput, and enable an increase in an interrogation region for probing the micro-entities.
摘要:
Apparatus and methods for detecting, characterizing, and compensating motion-related error of moving micro-entities are described. Motion-related error may occur in streams of moving micro-entities, and may represent a deviation in and expected arrival time or an uncertainty in position of a micro-entity within the stream. Motion-related error of micro-entities is observed in a flow cytometer, e.g., as pulse jitter, and is found to have a functional dependence on a parameter of the system. The pulse jitter can be compensated, according to one embodiment, by adjusting data acquisition observation windows. For the flow cytometer, a reduction of pulse jitter can improve measurement accuracy, resolution of doublets, system throughput, and enable an increase in an interrogation region for probing the micro-entities.
摘要:
Apparatus and methods for detecting, characterizing, and compensating motion-related error of moving micro-entities are described. Motion-related error may occur in streams of moving micro-entities, and may represent a deviation in and expected arrival time or an uncertainty in position of a micro-entity within the stream. Motion-related error of micro-entities is observed in a flow cytometer, e.g., as pulse jitter, and is found to have a functional dependence on a parameter of the system. The pulse jitter can be compensated, according to one embodiment, by adjusting data acquisition observation windows. For the flow cytometer, a reduction of pulse jitter can improve measurement accuracy, resolution of doublets, system throughput, and enable an increase in an interrogation region for probing the micro-entities.
摘要:
Apparatus and methods for detecting, characterizing, and compensating motion-related error of moving micro-entities are described. Motion-related error may occur in streams of moving micro-entities, and may represent a deviation in and expected arrival time or an uncertainty in position of a micro-entity within the stream. Motion-related error of micro-entities is observed in a flow cytometer, e.g., as pulse jitter, and is found to have a functional dependence on a parameter of the system. The pulse jitter can be compensated, according to one embodiment, by adjusting data acquisition observation windows. For the flow cytometer, a reduction of pulse jitter can improve measurement accuracy, resolution of doublets, system throughput, and enable an increase in an interrogation region for probing the micro-entities.