Abstract:
There is disclosed a lamp device comprising a longitudinal axis, a first elongate electrical connector and a second elongate electrical connector, each of the first elongate electrical connector and the second elongate connector being non- parallel with respect to the longitudinal axis. The present lamp device provides a reliable electric connection on the one hand, yet is relatively inexpensive, uncomplicated and simple to implement on the other hand.
Abstract:
The present invention relates to an ultraviolet radiation lamp. The lamp comprises: (i) a substantially sealed cavity comprising a mercury-containing material; and (ii) a heating unit disposed exteriorly with respect to the cavity. The heating unit is disposed in contact with a first portion of the cavity comprising the mercury-containing material. The heating unit has adjustable heat output.
Abstract:
There is disclosed a lamp device comprising a longitudinal axis, a first elongate electrical connector and a second elongate electrical connector, each of the first elongate electrical connector and the second elongate connector being non- parallel with respect to the longitudinal axis. The present lamp device provides a reliable electric connection on the one hand, yet is relatively inexpensive, uncomplicated and simple to implement on the other hand.
Abstract:
There is described a fluid treatment system which may which may be used with radiation sources that do not require a protective sleeve - e.g., excimer radiation sources. An advantage of the present fluid system treatment is that the radiation sources may be removed from the fluid treatment zone without necessarily having to shut down the fluid treatment system, remove the fluid, break the seals which retain fluid tightness, replace/service radiation source and than reverse the steps. Instead, the present fluid treatment system allows for service/replacement of the radiation sources in the fluid treatment zone during operation of the fluid treatment system.
Abstract:
There is described an excimer radiation lamp assembly. The lamp assembly comprises: an elongate member having an annular cross-section to define an elongate passageway aligned with a longitudinal axis of the lamp assembly; an electrode element in electrical connection with at least a portion of the elongate passageway; and a cooling element disposed in the elongate passageway, the cooling element being electrically isolated with respect to the electrode element.
Abstract:
A lamp device is disclosed. The lamp device comprises a first electrical connector and a second electrical connector located at a first end portion of the lamp device. The first end portion of the lamp device is received in a receptacle of a first base portion. A first locking portion is included for secunng the first base portion to the first end portion. The present radiation lamp device obviates or mitigates the need to use adhesive and/or polymer insulation/O-rings to achieve electrical connections. Further, the present radiation lamp may be oriented in a vertical orientation without the need to use springs and/or rubber part to support the distal end of the lamp.
Abstract:
The present invention relates to an ultraviolet radiation lamp. The lamp comprises: (i) a substantially sealed cavity comprising a mercury-containing material; and (ii) a heating unit disposed exteriorly with respect to the cavity. The heating unit is disposed in contact with a first portion of the cavity comprising the mercury-containing material. The heating unit has adjustable heat output.
Abstract:
There is disclosed an optical radiation sensor system for detecting radiation from a radiation source. The system comprises: a housing having a distal portion for receiving radiation from the radiation source and a proximal portion; a sensor element in communication with the proximal portion, the sensor element configured to detect and respond to incident radiation received from the radiation source; and motive means configured to move the housing with respect to the sensor element between at least a first position and a second position. A radiation pathway is defined between the radiation source and the sensor element when the housing is in at least one of the first position and the second position. Movement of the housing with respect to the sensor element causes a modification of intensity of radiation impinging on the sensor element. In its highly preferred embodiment, the radiation sensor system is of a modular design rendering the sensor system appropriate for use with one or more of various radiation sources, fluid thickness layers and/or in UVT conditions. In this highly preferred form, the sensor system may have built-in diagnostics for parameters such as sensor operation, radiation source output, fluid (e.g., water) UVT, radiation source fouling (e.g., fouling of the protective sleeves surrounding the radiation source) and the like. Other advantages of the present radiation sensor system include: incorporation of an integrated reference sensor, safe and ready reference sensor testing, UVT measurement capability and/or relatively low cost and ease of manufacture.
Abstract:
The invention relates to a radiation sensor device comprising a housing and a plurality of radiation sensor modules secured to the housing. Each radiation sensor module comprises a radiation sensor arranged to detect radiation incident on the radiation source module. Preferably, each radiation sensor module contains an entire so-called optical train to allow for calibration of the detector (e.g., photodiodes, photoresistors and the like) without disassembling all the components of the module.
Abstract:
The present invention relates to a fluid treatment system comprising: an inlet; an outlet; and a fluid treatment zone disposed between the inlet and the outlet. The fluid treatment zone has disposed therein: (i) an. elongate first radiation source assembly having a first longitudinal axis, and (ii) an elongate second radiation source assembly having a second longitudinal axis. The first longitudinal axis and the second longitudinal axis are non-parallel to each other and to a direction of fluid flow through the fluid treatment zone. The present fluid treatment system has a number of advantages including: it can treat large volumes of fluid (e.g., wastewater, drinking water or the like); it requires a relatively small 'footprint'; it results in a relatively lower coefficient of drag resulting in an improved hydraulic pressure loss/gradient over the length of the fluid treatment system; and it results in relatively lower (or no) forced oscillation of the radiation sources thereby obviating or mitigating of breakage of the radiation source and/or protective sleeve (if present). Other advantages are discussed in the specification.