摘要:
A heterojunction bipolar transistor with a vertically integrated profile includes a substrate layer, a collector contact layer, a collector layer, a base layer and an emitter layer, formed from AlGaAs, etched to form an emitter mesa leaving a relatively thin passivating layer, adjacent the emitter mesa. The base metal contacts are formed on the passivating layer, resulting in a wider bandgap, thus minimizing surface recombination velocity at the emitter-base junction and increasing the overall gain (β) of the device. The base metal contacts are formed by evaporating a p-ohmic metal onto the n-type passivation layer. The p-ohmic contacts are annealed, resulting in p-type metal diffusion through the passivating layer and reaction with the base layer, resulting in ohmic contacts.
摘要:
Disclosed is a method for fabricating complementary heterojunction bipolar transistors on a common substrate. The method comprises the steps of depositing a PNP profile (14) by molecular beam epitaxy on an appropriate substrate (12) and then depositing a layer of silicon nitride (16) on the PNP profile just deposited. The substrate is then heated in a vacuum in order to densify the silicon nitride. A mask (20) and resist layer (18) are used to produce the desired PNP profile patterns. The NPN profile (22) is deposited on the area of the substrate (12) etched away as well as on the silicon nitride layer (16) protecting the already deposited PNP layers. The NPN profile (22) is then patterned using a resist (24) and masking process. The polycrystalline NPN area on top of the silicon nitride layer and the remaining silicon nitride layer are etched away forming two adjacent complementary NPN and PNP profiles on a common substrate. In the fabrication of the heterojunction bipolar transistor circuits, the P-ohmic contacts on both the NPN and PNP materials is evaporated at the appropriate locations simultaneously. All of the N-ohmic contacts are also deposited simultaneously. By this, the complementary dual heterojunction bipolar transistor device can be effectively fabricated with excellent DC and microwave capabilities.
摘要:
A Schottky barrier diode and a method for fabricating a Schottky barrier diode that utilizes HBT active device layers. The Schottky barrier diode is formed with a vertically integrated profile on a GaAs substrate, with a subcollector layer and a collector layer. A suitable dielectric material is deposited on top of the collector layer. Vias are formed in the collector layer and subcollector layer for the barrier and ohmic contacts. The collector via is relatively deeply etched into the collector layer to lower the series resistance between the barrier and ohmic contacts, which results in relatively higher cut-off frequency performance.
摘要:
A Schottky barrier diode and a method for fabricating a Schottky barrier diode that utilizes HBT active device layers. The Schottky barrier diode is formed with a vertically integrated profile on a GaAs substrate, with a subcollector layer and a collector layer. A suitable dielectric material is deposited on top of the collector layer. Vias are formed in the collector layer and subcollector layer for the barrier and ohmic contacts. The collector via is relatively deeply etched into the collector layer to lower the series resistance between the barrier and ohmic contacts, which results in relatively higher cut-off frequency performance.
摘要:
A technique for producing high reliability GaAs-AlGaAs heterojunction bipolar transistors by Molecular Beam Epitaxy with beryllium base doping. Beryllium incorporation and diffusion, during base-layer deposition, is controlled through a combination of reduced substrate temperature and increase As/Ga flux ratio during MBE growth resulting in extremely stable heterojunction bipolar transistor profiles. In addition, graded InGaAs surface layers with non-alloyed refractory metal contacts are shown to significantly improve ohmic reliability to alloyed AuGe contacts. High gain (DC beta) is achieved by the use of an increased substrate temperature during emitter deposition. The HBTs in accordance with the present invention are useful in a number of important microwave applications such as log amps, a/d converters, and sample and hold circuits where high reliability is desired.
摘要:
Reduction in the base to collector capacitance of a heterojunction bipolar transistor, and, improved high frequency performance is achieved using existing materials and processes by undercutting the collector (5)under the base (7) along two parallel sides of the base mesa (7 - Fig. 4), and providing a sloped collector edge (5-Fig. 6) along the remaining two parallel sides of the base. The foregoing is accomplished by selective etching and with the four sides of the mesa regions oriented as a non-rectangular parallelogram (7, 9 - Fig. 4) in which one pair of sides is in parallel with one of the said [0 0 1] and [0 0 1 ¯ ] planes of the crystalline structure and the other pair of sides in parallel with one of the [0 1 1] and [0 1 1 ¯ ] planes of the crystalline structure.
摘要:
A heterojunction bipolar transistor with a vertically integrated profile includes a substrate layer, a collector contact layer, a collector layer, a base layer and an emitter layer, formed from AlGaAs, etched to form an emitter mesa leaving a relatively thin passivating layer, adjacent the emitter mesa. The base metal contacts are formed on the passivating layer, resulting in a wider bandgap, thus minimizing surface recombination velocity at the emitter-base junction and increasing the overall gain (β) of the device. The base metal contacts are formed by evaporating a p-ohmic metal onto the n-type passivation layer. The p-ohmic contacts are annealed, resulting in p-type metal diffusion through the passivating layer and reaction with the base layer, resulting in ohmic contacts.
摘要:
A heterojunction bipolar transistor and a method for fabricating an HBT with self-aligned base metal contacts using a double photoresist, which requires fewer process steps than known methods, while minimizing damage to the active emitter contact region. In particular, a photoresist is used to form the emitter mesa. The emitter mesa photoresist is left on and a double polymethylmethacrylate (PMMA) and photoresist layer is then applied. The triple photoresist combination is patterned to create a non-critical lateral alignment for the base metal contacts to the emitter mesa, which permits selective base ohmic metal deposition and lift-off. By utilizing the double photoresist as opposed to a metal or dielectric for masking, an additional photolithography step and etching step is eliminated. By eliminating the need for an additional etching step, active regions of the semiconductors are prevented from being exposed to the etching step and possibly damaged.
摘要:
4-terminal HEMT-HBT composite devices, based upon monolithically integrated HEMT-HBT technology and configured in various topologies, are useful in a wide range of applications which currently utilize discrete MMICs. In particular, the 4-terminal topologies are easily configured as 3-terminal composite devices useful in various 2-port and 3-port MMIC circuit applications, such as low noise-high linearity amplifiers as well as mixers, which provide the benefits of a reduction in size, as well as corresponding cost while providing better performance than utilizing either HEMT or HBT devices individually.