摘要:
A flow-type laboratory scale ozonolysis apparatus (100) according to the invention comprises a reservoir (104), a feed pump (102), a mixing element (120) with two inlets and an outlet, a reactor unit (110) and a pressure-adjusting means (160), all connected into a flow path. The ozonolysis apparatus (100) further comprises an ozone source (110), as well as a dispensing valve (112) transmitting a gas stream only in a single direction and installed between the ozone source (110) and one of the inlets of the mixing element (120). The feed pump (102) of the ozonolysis apparatus (100) according to the invention is a liquid pump generating a constant volume rate, the reservoir (104) contains at least the substance, as a solute, to be subjected to the ozonolysis reaction and the reactor unit consists of first and second reactor zones differing in function from one another. In the flow path, the outlet of the first reactor zone is connected to the inlet of the second reactor zone. Furthermore, an inlet for feeding in substances is inserted into the flow path between the reactor zones, and the pressure-adjusting means (160) is installed into the flow path after the reactor unit and is provided with an electrically governed control.
摘要:
In a method according to the invention for forming a sealed channel (125) in the surface of a sheet made of a material with certain extent of plasticity, the machining surface of a tool with a rolling machining surface is brought into contact with a first point of the channel (125) to be formed in the surface of the sheet constituting a reactor block. Next, said machining surface is pressed onto the surface of the sheet with a compressive force (F) required to achieve the depth of the channel (125) to be formed, whereby the plastic material is squeezed out and becomes raised from the sheet surface on the peripheries of the depression being formed. After this, while maintaining the compressive force (F), by displacing said machining surface along the centerline of the channel (125) over the sheet surface it is rolled from the first point of the channel (125) to be formed to a second point thereof, whereby the channel (125) is machined in the material of the sheet and sealing edges (127) are created on the peripheries of the channel (125) from the material squeezed out and become raised. After creating said sealing edges (127), a closing member bearing against the sealing edges (127) is arranged at the surface of the sheet provided with the channel (125) and the sealing edges (127), and then said closing member is pressed onto the sheet by a compressive force required to deform said sealing edges (127) and is fixed in the position obtained, whereby a sealed channel (125) running between the first and second points is formed within the reactor block.
摘要:
The ozone generating electrolysis cell (10) according to the invention has a negative electrode (13) and an ozone generating positive electrode (16) comprising a mixture of lead dioxide and polytetrafluoroethylene (PTFE). A proton conducting solid electrolytic membrane (15) is arranged between the negative and positive electrodes (13, 16). The ozone generating electrolysis cell (10) also comprises an electrically conducting, liquid and gas permeable first electrode support (17) in contact with a side of the positive electrode (16) located opposite to the membrane (15), wherein said side of the electrode support (17) has a surface covered with a platinum-containing layer. The positive electrode (16) is made of a mixture prepared by the high-pressure compression of lead dioxide grains of colloid size and PTFE filaments having a dimension of at most 1 mm. Furthermore, the negative electrode (13) is adjoined to a side of the membrane (15) located opposite to the positive electrode (16) by a given compressing force and is formed on a surface of a porous second electrode support (12).
摘要:
A flow-type laboratory scale ozonolysis apparatus (100) according to the invention comprises a reservoir (104), a feed pump (102), a mixing element (120) with two inlets and an outlet, a reactor unit (110) and a pressure-adjusting means (160), all connected into a flow path. The ozonolysis apparatus (100) further comprises an ozone source (110), as well as a dispensing valve (112) transmitting a gas stream only in a single direction and installed between the ozone source (110) and one of the inlets of the mixing element (120). The feed pump (102) of the ozonolysis apparatus (100) according to the invention is a liquid pump generating a constant volume rate, the reservoir (104) contains at least the substance, as a solute, to be subjected to the ozonolysis reaction and the reactor unit consists of first and second reactor zones differing in function from one another. In the flow path, the outlet of the first reactor zone is connected to the inlet of the second reactor zone. Furthermore, an inlet for feeding in substances is inserted into the flow path between the reactor zones, and the pressure-adjusting means (160) is installed into the flow path after the reactor unit and is provided with an electrically governed control.