摘要:
Target nucleated cells, and target cells containing remnant ribosomal material, which are present in a quiescent anticoagulated whole blood sample are optically detected, enumerated, and analyzed in a sample chamber (14) that has a varying through plane thickness due to convergent opposing sample chamber walls. At least one of the convergent walls (8) of the chamber is transparent so that the blood sample can be observed. The chamber's varying thickness produces a first lesser thickness region (A) in the chamber wherein individual red cells (32) and quiescent monolayers (31) of red cells in the sample will reside after the sample is introduced into and fills the chamber. Larger formed constituents such as white blood cells (34) and nucleated red blood cells present in the sample will reside in greater thickness regions (B) of the chamber, and non-nucleated red cells which reside in such greater thickness regions will agglomerate to form rouleaux (33). By admixing fluorescent dyes with the blood sample, target cells in the sample can be enumerated and differentiated by means of a scanning instrument (54) which is able to measure different wave length color signals emitted from the target cells in the sample, and differentiate the target cells one from another by reason of the nature of the emitted color signals.
摘要:
An apparatus for analyzing a sample of biologic fluid quiescently residing within a chamber (20) is provided. The apparatus includes a field illuminator (40), a positioner (86), a mechanism for determining the volume of a sample field, and an image dissector (42). The field illuminator (40) is operable to illuminate a sample field of known, or ascertainable, area. The positioner (86) is operable to selectively change the position of one of the chamber (20) or the field illuminator (40) relative to the other, thereby permitting selective illumination of all regions of the sample. The mechanism for determining the volume of a sample field can determine the volume of a sample field illuminated by a light source. The image dissector (42) is operable to convert an image of light passing through or emanating from the sample field into an electronic data format.
摘要:
Target nucleated cells, and target cells containing remnant ribosomal material, which are present in a quiescent anticoagulated whole blood sample are optically detected, enumerated, and analyzed in a sample chamber (14) that has a varying through plane thickness due to convergent opposing sample chamber walls. At least one of the convergent walls (8) of the chamber is transparent so that the blood sample can be observed. The chamber's varying thickness produces a first lesser thickness region (A) in the chamber wherein individual red cells (32) and quiescent monolayers (31) of red cells in the sample will reside after the sample is introduced into and fills the chamber. Larger formed constituents such as white blood cells (34) and nucleated red blood cells present in the sample will reside in greater thickness regions (B) of the chamber, and non-nucleated red cells which reside in such greater thickness regions will agglomerate to form rouleaux (33). By admixing fluorescent dyes with the blood sample, target cells in the sample can be enumerated and differentiated by means of a scanning instrument (54) which is able to measure different wave length color signals emitted from the target cells in the sample, and differentiate the target cells one from another by reason of the nature of the emitted color signals. (Drawing - Figure 3 )
摘要:
Target nucleated cells, and target cells containing remnant ribosomal material, which are present in a quiescent anticoagulated whole blood sample are optically detected, enumerated, and analyzed in a sample chamber (14) that has a varying through plane thickness due to convergent opposing sample chamber walls. At least one of the convergent walls (8) of the chamber is transparent so that the blood sample can be observed. The chamber's varying thickness produces a first lesser thickness region (A) in the chamber wherein individual red cells (32) and quiescent monolayers (31) of red cells in the sample will reside after the sample is introduced into and fills the chamber. Larger formed constituents such as white blood cells (34) and nucleated red blood cells present in the sample will reside in greater thickness regions (B) of the chamber, and non-nucleated red cells which reside in such greater thickness regions will agglomerate to form rouleaux (33). By admixing fluorescent dyes with the blood sample, target cells in the sample can be enumerated and differentiated by means of a scanning instrument (54) which is able to measure different wave length color signals emitted from the target cells in the sample, and differentiate the target cells one from another by reason of the nature of the emitted color signals.
摘要:
A method and apparatus for determining the minimum inhibitory concentration of an antibiotic for a target microorganism are provided. The method includes the steps of: (a) providing a microorganism growth medium (14, 34); (b) providing a sensible reagent (17, 36), which includes an antibiotic mixed with a marker, the marker having a signal with a magnitude proportional to the marker's concentration; (c) incorporating the reagent into the growth medium, in a manner that creates a gradient of concentrations (18, 40) of the antibiotic and marker within the growth medium; (c) inoculating the growth medium with the target microorganism; (d) incubating the inoculated growth medium for a period of time sufficient for the target microorganism to grow a detectable amount on a first section (20, 42) of growth medium; (e) determining a growth boundary (28, 48) between the first section of growth medium having detectable target microorganism growth and a second section (24, 46) having substantially no detectable target microorganism growth; (f) measuring the signal magnitude at the growth boundary; and (g) determining a minimum inhibitory concentration of the antibiotic using the measured signal magnitude.
摘要:
A method for evaluating constituents of a sample of substantially undiluted anti-coagulated whole blood is provided which includes the steps of: a) providing a sample chamber (10); b) admixing a sensible colorant with the sample of whole blood; c) inserting the admixed sample into the sample chamber; d) quiescently holding the admixed sample for a period until rouleaux (30) and lacunae (32) form within the sample; and e) evaluating a target constituent disposed within the lacunae (32).
摘要:
An apparatus for analyzing a sample of biologic fluid quiescently residing within a chamber (20) is provided. The apparatus includes a field illuminator (40), a positioner (86), a mechanism for determining the volume of a sample field, and an image dissector (42). The field illuminator (40) is operable to illuminate a sample field of known, or ascertainable, area. The positioner (86) is operable to selectively change the position of one of the chamber (20) or the field illuminator (40) relative to the other, thereby permitting selective illumination of all regions of the sample. The mechanism for determining the volume of a sample field can determine the volume of a sample field illuminated by a light source. The image dissector (42) is operable to convert an image of light passing through or emanating from the sample field into an electronic data format.
摘要:
Target nucleated cells, and target cells containing remnant ribosomal material, which are present in a quiescent anticoagulated whole blood sample are optically detected, enumerated, and analyzed in a sample chamber (14) that has a varying through plane thickness due to convergent opposing sample chamber walls. At least one of the convergent walls (8) of the chamber is transparent so that the blood sample can be observed. The chamber's varying thickness produces a first lesser thickness region (A) in the chamber wherein individual red cells (32) and quiescent monolayers (31) of red cells in the sample will reside after the sample is introduced into and fills the chamber. Larger formed constituents such as white blood cells (34) and nucleated red blood cells present in the sample will reside in greater thickness regions (B) of the chamber, and non-nucleated red cells which reside in such greater thickness regions will agglomerate to form rouleaux (33). By admixing fluorescent dyes with the blood sample, target cells in the sample can be enumerated and differentiated by means of a scanning instrument (54) which is able to measure different wave length color signals emitted from the target cells in the . , sample, and differentiate the target-cells one from another by reason of the nature of the emitted color signals. (Drawing - Figure 3 )
摘要:
A method and apparatus for determining the minimum inhibitory concentration of an antibiotic for a target microorganism are provided. The method includes the steps of: (a) providing a microorganism growth medium (14, 34); (b) providing a sensible reagent (17, 36), which includes an antibiotic mixed with a marker, the marker having a signal with a magnitude proportional to the marker's concentration; (c) incorporating the reagent into the growth medium, in a manner that creates a gradient of concentrations (18, 40) of the antibiotic and marker within the growth medium; (c) inoculating the growth medium with the target microorganism; (d) incubating the inoculated growth medium for a period of time sufficient for the target microorganism to grow a detectable amount on a first section (20, 42) of growth medium; (e) determining a growth boundary (28, 48) between the first section of growth medium having detectable target microorganism growth and a second section (24, 46) having substantially no detectable target microorganism growth; (f) measuring the signal magnitude at the growth boundary; and (g) determining a minimum inhibitory concentration of the antibiotic using the measured signal magnitude.
摘要:
Formed constituents of a quiescent anticoagulated whole blood sample are optically analyzed by an optical scanning instrument (54), which sample is contained in a sample chamber (14) that has a varying through plane thickness. The thickness of any fields of view in the blood sample which contain plasma lacunae can be calculated by the instrument as a function of signal emission strength emanating from the colored plasma in the lacunae. The signal emissions can be the result of sample fluorescence or can be the result of signal density emanating from the sample. Particle volumes can be measured as a function of signal emission suppression which is caused by formed particles in the blood sample. The scanning instrument is calibrated by means of the inclusion of a calibration area (13, 38, 40) associated with the chamber which calibration area includes a portion (37) which receives a known depth of colored plasma from the blood sample, and which calibration area also includes a colorant-emission-altering feature (36) which feature has a known volume. The scanning instrument scans the known depth portion of the calibration area to determine what degree of signal emission strength correlates to the known depth, and the scanning instrument also scans the colorant-emission-suppressing feature to determine what degree of signal alteration correlates to the known volume of the aforesaid feature. The instrument stores the information gained from the calibration area and then proceeds to analyze the blood sample for formed constituent volumes and constituent counts per unit of the blood sample.