摘要:
With an aim to provide a method for producing an oxide particle with controlled color characteristics and also provide an oxide particle with controlled color characteristics, the present invention provides a method for producing an oxide particle, wherein the color characteristics of the oxide particle are controlled by controlling a ratio of an M-OH bond between an element (M) and a hydroxide group (OH) or an M-OH bond/M-O bond ratio, where the element (M) is one element or plural different elements other than oxygen or hydrogen included in the oxide particle selected from metal oxide particles and semi-metal oxide particles. According to the present invention, by controlling the M-OH bond or the M-OH bond/M-O bond ratio of the metal oxide particle or the semi-metal oxide particle, the oxide particle with controlled color characteristics of any of reflectance, transmittance, molar absorption coefficient, hue, and saturation can be provided.
摘要:
A method of separating biologically ingestible microparticles is used to obtain biologically ingestible microparticles in a thin film fluid formed between two processing surfaces provided with a solution containing a first solvent in which an objective substance to be pulverized is dissolved and a solvent capable of serving as a second solvent in which the solubility of the microparticles is lower than in the first solvent, the two processing surfaces being arranged so as to be able to approach to and separate from each other, at least one of which rotates relative to the other. In the method for producing biologically ingestible microparticles by separating raw materials of biologically ingestible microparticles by a neutralization reaction in a fluid, the fluid is formed into a thin film fluid between two processing surfaces arranged so as to be able to approach to and separate from each other, at least one of which rotates relative to the other, and biologically ingestible microparticles are separated by a neutralization reaction in the thin film fluid. A solution containing a first solvent in which a chemical as a main eye drop component is dissolved, and a solvent capable of serving as a second solvent in which the solubility of the chemical is lower than in the first solvent, are mixed in a thin film fluid formed between two processing surfaces arranged so as to be able to approach to and separate from each other, at least one of which rotates relative to the other, thereby separating drug particles and providing suspended eye drops based on the drug particles.
摘要:
The object of the present invention is to provide a silicon oxide-coated oxide composition for coating in which color characteristics, particularly reflectivity are controlled, and a method of producing a composition for coating which is used by blending the composition for coating to a paint constituting a coated body in which weather resistance is required. The present invention provides a silicon oxide-coated oxide composition for coating in which weather resistance is required, which comprises silicon oxide-coated oxide particles wherein at least a part of the surface of the oxide particles is coated with silicon oxide, wherein the silicon oxide is amorphous for the purpose of controlling color characteristics of the silicon oxide-coated oxide composition for coating. And the present invention provides a method of producing the composition for coating, wherein color characteristics of the oxide particles are controlled by producing the oxide particles by selecting presence or absence of amorphous silicon oxide covering at least a part of the surface of the oxide particles, and presence or absence of an acetyl group as a functional group contained in the silicon oxide-coated oxide particles.
摘要:
The problem addressed by the present invention is to provide a high heat-resistant phthalocyanine. The phthalocyanine is separated by mixing a phthalocyanine separation solvent and a phthalocyanine solution characterized in that a phthalocyanine starting material is dissolved in a solvent. The phthalocyanine is characterized by having high heat resistance, the decomposition temperature of the separated phthalocyanine being at least 10°C higher than the decomposition temperature of the phthalocyanine starting material. Also, the phthalocyanine solution may be the result of dissolving at least two types of phthalocyanine starting material in the solvent, the separated phthalocyanine being characterized by containing a solid solvent of the at least two types of phthalocyanine starting material and by the decomposition temperature of the separated phthalocyanine being at least 10°C higher than the decomposition temperature of a mixture of at least two types of phthalocyanine separated by mixing the phthalocyanine separation solvent and each of at least two types of phthalocyanine solution resulting from dissolving each of the at least two types of phthalocyanine starting material in a solvent.
摘要:
The purpose of the present invention is to provide a method for modifying nickel microparticles weight loss of which occurs due to heat treatment such as burning and a method for producing nickel microparticles comprising the modification method. Provided is a method for modifying nickel microparticles comprising a step of making an acid and/or hydrogen peroxide act on nickel microparticles weight loss of which occurs due to heat treatment such as burning and a method for producing nickel microparticles comprising the modification method. The step of making an acid and/or hydrogen peroxide act reduces a rate of weight loss due to heat treatment of the nickel microparticles, nitric acid or a mixture of acids that include nitric acid is preferably used as the acid, and the nickel microparticles and acid and/or hydrogen peroxide are preferably made to act in a ketonic solvent.
摘要:
The present invention provides a method for producing metal-supported carbon, which includes supporting metal microparticles on the surface of carbon black, by a liquid-phase reduction method, in a thin film fluid formed between processing surfaces arranged to be opposite to each other so as to be able to approach to and separate from each other, at least one of which rotates relative to the other, as well as a method for producing crystals comprising fullerene molecules and fullerene nanowhisker/nanofiber nanotubes, which includes uniformly stirring and mixing a solution containing a first solvent having fullerene dissolved therein, and a second solvent in which fullerene is less soluble than in the first solvent, in a thin film fluid formed between processing surfaces arranged to be opposite to each other so as to be able to approach to and separate from each other, at least one of which rotates relative to the other.
摘要:
This fine particle production method involves a dissolving step in which a stirrer having a rotating stirring blade is used to dissolve at least one type of fine particle raw material in a solvent to obtain a fine particle raw material solution, and a precipitation step in which the fine particle raw material solution and at least one type of precipitation solvent for precipitating the fine particle raw material from the fine particle raw material solution are introduced between at least two treatment surfaces which are arranged oppositely one another, can move closer to and farther apart from one another, and at least one of which can rotate relative to the other, and the fine particle raw material solution and the at least one type of precipitation solvent are mixed in a thin film fluid formed between the at least two treatment surfaces, and the fine particles are precipitated. The stirring energy is determined by the stirring time conditions of the stirrer, the circumferential velocity conditions of the stirring blade, and the temperature conditions of the fine particle raw material solution, and in the dissolving step, the stirring energy is varied by changing at least one of the aforementioned conditions, and by changing the stirring energy, the degree of crystallization and the crystal form of the fine particles obtained in the precipitation step are controlled.
摘要:
The present invention addresses the problem of providing a method for producing nickel microparticles in which the ratio of crystallite's diameter to the particle diameter of the nickel microparticles is controlled. At least two types of fluids to be processed are used, including a nickel compound fluid in which a nickel compound is dissolved in a solvent, and a reducing agent fluid in which a reducing agent is dissolved in a solvent. Sulfate ions are included in the nickel compound fluid, and polyol is included in the nickel compound fluid and/ or the reducing agent fluid. The fluid to be processed is mixed in a thin film fluid formed between at least two processing surfaces (1, 2), at least one of which rotates relative to the other, and which are disposed facing each other and capable of approaching and separating from each other, and nickel microparticles are precipitated. The present invention is characterized in that at this time, the ratio (d/ D) of crystallite's diameter (d) to the particle diameter (D) of the nickel microparticle is controlled by controlling the pH of the nickel compound fluid introduced between the processing surfaces (1, 2) and the molar ratio of sulfate ions with respect to nickel in the nickel compound fluid.