摘要:
Embodiments described herein relate generally to devices, systems and methods for optimizing and masking compression in a biosensing garment. The biosensing garment has a first fabric portion configured to be disposed about a circumferential region of a user, the first fabric portion having an inner surface including electrode sensor assembly configured to be placed in contact with the skin of the user, the first fabric portion having a first compression rating; and a second fabric portion extending from the first fabric portion, the second fabric portion having a second compression rating less than the first compression rating.
摘要:
A telemetrically enhanced article of clothing comprises a fabric layer having an inside surface and an outside surface. A sensor is attached to the inside surface of the fabric layer such that when the article of clothing is worn by the user, the sensor is in contact with the user's skin. An electrically conductive trace may extend along the fabric layer and may be electrically connected at a first end to the sensor. A retaining ring may be adhered to the fabric layer near a second end of the electrically conductive trace. The retaining ring is capable of receiving a telemetry device and forming a compression connection between the perimeter of the telemetry device and the retaining ring such that when the telemetry device is received in the retaining ring, the second end of the electrically conductive trace is in electrical contact with the telemetry device. The telemetry device may store, process, or transmit physiological and/or other data collected by a sensor.
摘要:
A telemetrically enhanced article of clothing comprises a fabric layer having an inside surface and an outside surface. A sensor is attached to the inside surface of the fabric layer such that when the article of clothing is worn by the user, the sensor is in contact with the user's skin. An electrically conductive trace may extend along the fabric layer and may be electrically connected at a first end to the sensor. A retaining ring may be adhered to the fabric layer near a second end of the electrically conductive trace. The retaining ring is capable of receiving a telemetry device and forming a compression connection between the perimeter of the telemetry device and the retaining ring such that when the telemetry device is received in the retaining ring, the second end of the electrically conductive trace is in electrical contact with the telemetry device. The telemetry device may store, process, or transmit physiological and/or other data collected by a sensor.
摘要:
A wearable therapeutic device to facilitate care of a subject is provided. The wearable therapeutic device can include a garment having a sensing electrode. The garment includes at least one of an inductive element and a capacitive element, and a controller identifies an inductance of the inductive element or a capacitance of the capacitive element, and determines a confidence level of information received from the sensing electrode based on the inductance or the capacitance. The wearable therapeutic device also includes an alarm module coupled with the controller and configured to provide a notification to a subject based on the confidence level.
摘要:
A biological signal measuring wearing device configured to measure a biological signal from the body surface of a wearer includes a wearing device body configured to cover the body surface of the wearer, a biological signal detecting part provided on a predetermined part of the inner surface of the wearing device body and configured to detect the biological signal from the body surface of the wearer, and a signal communicating part configured to output the signal detected by the biological signal detecting part.
摘要:
The present invention relates generally to muscle relaxation. Muscle relaxation is desired in many disease states, including spastic paresis and biomechanical and neuromuscular dysfunction. More specifically, the invention relates to a system that causes muscle relaxation by reducing muscular spasticity through the stimulation of joints and muscles. The system consists of a garment with electrodes, a hardware unit and software controlling the stimulation.