Abstract:
A lancet-sampler system is configured to automatically remove a protective cover from a lancet and automatically unpack a test pad just prior to use. This minimizes the risk of injury and reduces the chance of cross-contamination between the lancet and the test pad. The lancet defines a capillary groove for drawing body fluid from the incision via capillary action and a sample transfer opening for collecting the fluid from the groove. A carrier tape is coupled to the lancet. The carrier tape includes a test pad for analyzing the fluid. The tape is folded around the test pad to form an airtight package. The test pad is located at a position to align with the sample transfer opening when the tape is unfolded. The protective cover covers a portion of the lancet, and when the tape is pulled, the protective cover is automatically pulled from the lancet.
Abstract:
A body fluid sensing device with a body fluid capture structure and a body fluid measurement sensor positioned in the body fluid capture structure. A capacitance sensor is coupled to the body fluid measurement sensor. The capacitance sensor is used to assist in the positioning of a body part relative to the body fluid capture structure.
Abstract:
The present invention generally relates to systems and methods for delivering and/or receiving a substance or substances such as blood from subjects. In one aspect, the present invention is directed to devices and methods for receiving or extracting blood from a subject, e.g., from the skin and/or from beneath the skin, using devices containing a substance transfer component (for example, one or more needles or microneedles) and a reduced pressure or vacuum chamber having an internal pressure less than atmospheric pressure prior to receiving blood. In some embodiments, the device may contain a "snap dome" or other deformable structure, which may be used, at least in part, to urge or move needles or other suitable substance transfer components into the skin of a subject. In some cases, for example, the device may contain a flexible concave member and a needle mechanically coupled to the flexible concave member such that the needle may be urged or moved into the skin using the flexible concave member. Other aspects of the present invention are directed at other devices for receiving blood (or other bodily fluids, e.g., interstitial fluid), kits involving such devices, methods of making such devices, methods of using such devices, and the like.
Abstract:
A device for a hypodermic needle comprises a connector for connecting to a hypodermic needle, a sheath (22) which in use surrounds the hypodermic needle and a biasing device (24) between the connector and the sheath. The sheath is moveable between a first position into which it is biased by the biasing device and a second retracted position against the force of the biasing device, so that in use, the tip of the hypodermic needle is covered in the first position but a defined length of the hypodermic needle is exposed in the second position. The device also sets the position of the angle of the hypodermic needle and locks the sheath over the needle after use.
Abstract:
A method of assembling a lancet housing assembly comprising multiple lancets for use in a portable handheld medical diagnostic device for sampling bodily fluids from a skin site of a patient is disclosed. The method includes forming a plurality of lancet structures in a lancet sheet. The lancet sheet has a removable ledge for releasing the lancet structures. The removable ledge of the lancet sheet is flexed for releasing the lancet structures from the removable ledge.