Abstract:
A lancing device has a charging mechanism that operates to convert an external push action by a user to an internal pull action that retracts and charges a lancet for use in a lancing stroke. In some embodiments, the charging mechanism includes a user-actuated charging push-button, a reverse charging member coupled to a lancet carrier, and a reverse-motion conversion member coupled therebetween. Depressing the user-actuated member in a first longitudinal direction causes transverse movement of the conversion member, which in turn causes longitudinal retraction of the reverse charging member and the lancet carrier coupled thereto in a second longitudinal direction opposite the first direction, thereby charging a drive mechanism of the lancing device. In other embodiments, a rack-and-pinion gear mechanism provides the same push-to-pull functionality.
Abstract:
The present application generally relates to receiving bodily fluid through a device opening (130).The device includes a flow activator (90) arranged to cause fluid to be released from a subject. A deployment actuator (60) actuates the flow activator in a deployment direction, which in turn causes fluid release from a subject. The flow activator is also moved in a retraction direction by a retraction actuator (40).
Abstract:
A lancing device with a depth-adjustment mechanism including an adjustably-positioned stop surface, a movable control member operably coupled thereto, and a resiliently deflectable leg that engages the stop surface and a lancet carrier to provide a soft stop for the lancet carrier. The lancet carrier deflects the leg in a forward phase of the lancing stroke, and then the leg contacts the stop surface to stop the forward motion of the lancet carrier at an extended lancing position. The stop surface can be adjustably positioned so that different portions thereof are engaged to stop the lancet carrier at deeper or shallower positions. In example embodiments, the depth-adjustment mechanism includes a rotary dial and an extension arm of the leg, with the dial including a rotary wheel and a rotary shaft extending axially therefrom, the wheel forming the movable adjustment member, and the shaft forming the adjustably positioned stop surface.
Abstract:
The invention relates to a blocking mechanism for a skin incision device and to a method of controlling of a skin incision device by a blocking mechanism. The blocking mechanism comprises a blocking means and a trigger means, which by, respectively, a fixing means and a locating means are mounted in a housing of the cooperating incision device, and which are provided with an engaging means configured to cooperate mutually with each other so that an inadvertent firing of the blocking mechanism and an inadvertent actuation of the incision device prior to use of the device as well as a re-use of the device is not possible, and an indication of a state of use of the device by the blocking means and the trigger means is unambiguous.
Abstract:
Body fluid sampling device comprising a skin-piercing element (1) having a collection zone (2) for receiving body fluid, and the device further comprising a fluid receiving means (10) remote spaced apart from said collection zone so that body fluid in said collection zone will not contact the fluid receiving means initially. Said collection zone takes up a very small volume of body fluid of about 10 to 500 nl in a very short time period of less than 0,5 s. Said fluid receiving means may have a test zone (35) for performing an analytical reaction. Fluid sample from said collection zone is automatically or manually transported to said fluid receiving means to contact said fluid with said test zone.
Abstract:
Apparatus (120) for a single, handheld device that provides for both insertion of a catheter (132) and collection of a fluid. The apparatus includes a needle (142) that assists in the insertion of the catheter into a blood vessel, and which includes a retraction feature (146) that protects the user from an accidental needle stick when the device is ready for disposal. Still further embodiments include a protective cover (163) that prevents a user from accidentally being stuck by a second needle (152) used for the introduction of the patient's blood into a collection device.
Abstract:
An apparatus includes a cannula assembly, a housing, a fluid reservoir, a flow control mechanism, and an actuator. The housing includes an inlet port removably coupled to the cannula assembly and defines an inner volume. The fluid reservoir is fluidically coupled to the housing and configured to receive and isolate a volume of bodily fluid from a patient. The flow control mechanism is at least partially disposed in the inner volume. The actuator is operably coupled to the flow control mechanism and is configured to move the flow control mechanism between a first configuration, in which bodily fluid can flow, via a fluid flow path defined by the flow control mechanism, from the cannula assembly, through the inlet port and into the fluid reservoir, to a second configuration, in which the fluid reservoir is fluidically isolated from the cannula assembly.
Abstract:
An integrated monitoring and body fluid sampling device constructed to permit digital as well as alternate-site body fluid sampling and analysis, the device comprising: a housing; at least one skin-penetration member; and a member constructed for the application of circumferential or vacuum pressure to an appendage; wherein the member is detachably or retractably connected to the housing in a manner such that the integrated monitoring and body fluid sampling device can perform digital or alternate-site body fluid sampling and analysis. Additional arrangements and techniques are also described.
Abstract:
A sensor can be manufactured by printing a working electrode onto a substrate using aerosol jet printing. Sensing chemistry (e.g., enzyme-based ink that including detection chemistry) also can be printed onto the working electrode using aerosol jet printing. A reference electrode also can be printed on the substrate at a position spaced along the substrate from the working electrode. In certain examples, the substrate can be positioned within a lumen of a skin piercing member of a sensor module.