摘要:
Catalyst systems for polymerizing olefins include a catalyst comprising chromium and a cocatalyst comprising a substituted or unsubstituted non-transition metal cyclopentadienyl (Cp) compound. The catalyst also comprises an inorganic oxide support. Methods of preparing a catalyst comprise contacting a support with chromium and with a non-transition metal Cp compound. The support can be contacted with a solution comprising the non-transition metal Cp compound prior to entry into a reaction zone. Methods of polymerizing at least one olefin include contacting the olefin with a catalyst comprising chromium and with a cocatalyst comprising a non-transition metal Cp. The polymerization can be performed in the presence of hydrogen. Using the cocatalyst in conjunction with the catalyst increases several properties of the polymers produced by this method. Polymer compositions produced by such methods have various unique properties, including a PDI greater than 30.
摘要:
This invention relates to a cycloolefin copolymer, which is prepared via ring-opening metathesis polymerization using, as monomers, dicyclopentadiene obtained by chemically bonding two cyclopentadiene molecules using a Diels-Alder reaction and tricyclopentadiene obtained by chemically bonding three cyclopentadiene molecules using a Diels-Alder reaction, in which the cyclopentadiene is a C5-fraction of naphtha cracking, and to a method of preparing the same. This copolymer is a non-crystalline transparent resin and is useful for a variety of end uses.
摘要:
This invention relates to non-Group 4 transition metal compositions useful as olefin polymerization catalysts, wherein the transition metal is in a high oxidation state. The invention further relates to design of new ligand systems and methods of preparing and using the same. Compositions useful as catalyst precursors are neutral transition metal complexes comprising the unique ligand systems of the invention. The inventive compositions may be activated to a catalytic state by ion-exchange reagents or by Lewis acids.
摘要:
Catalyst systems for polymerizing olefins include a catalyst comprising chromium and a cocatalyst comprising a substituted or unsubstituted non-transition metal cyclopentadienyl (Cp) compound. The catalyst also comprises an inorganic oxide support. Methods of preparing a catalyst comprise contacting a support with chromium and with a non-transition metal Cp compound. The support can be contacted with a solution comprising the non-transition metal Cp compound prior to entry into a reaction zone. Methods of polymerizing at least one olefin include contacting the olefin with a catalyst comprising chromium and with a cocatalyst comprising a non-transition metal Cp. The polymerization can be performed in the presence of hydrogen. Using the cocatalyst in conjunction with the catalyst increases several properties of the polymers produced by this method. Polymer compositions produced by such methods have various unique properties, including a PDI greater than 30.
摘要:
Catalyst systems for polymerizing olefins include a catalyst comprising chromium and a cocatalyst comprising a substituted or unsubstituted non-transition metal cyclopentadienyl (Cp) compound. The catalyst also comprises an inorganic oxide support. Methods of preparing a catalyst comprise contacting a support with chromium and with a non-transition metal Cp compound. The support can be contacted with a solution comprising the non-transition metal Cp compound prior to entry into a reaction zone. Methods of polymerizing at least one olefin include contacting the olefin with a catalyst comprising chromium and with a cocatalyst comprising a non-transition metal Cp. The polymerization can be performed in the presence of hydrogen. Using the cocatalyst in conjunction with the catalyst increases several properties of the polymers produced by this method. Polymer compositions produced by such methods have various unique properties, including a PDI greater than 30.