摘要:
In an embodiment, a temperature measurement device is provided with: light collection means; extraction means; optical intensity calculation means; and temperature measurement means. The light collection means collects the emission spectrum of a measurement subject. The extraction means extracts beams having the wavelength of the atomic spectral lines and a beam having a wavelength in a wavelength region where there are no atomic spectral lines, from the emission spectrum collected by the aforementioned light collection means. The optical intensity calculation means calculates the optical intensities of the beams extracted by the aforementioned extraction means. The temperature measurement means calculates the temperature of the aforementioned measurement subject, based on the intensities of the beams calculated by the aforementioned optical intensity calculation means.
摘要:
Radiated light with a specified wavelength from a material (21, P, 201) is detected and a first parameter corresponding to the emissivity ratio is obtained from the detection signal. Since the emissivity takes on different values according to the condition of the surface of the material, the first parameter changes depending on the surface condition of the material. There is a correlation between a physical value indicating a condition of the material surface and the first parameter. The correlation remains equivalent even if a second parameter corresponding to the physical value is used instead of the physical value itself (for example, an optical physical value such as reflectivity and absorptivity, the thickness of a film formed on the material surface, the surface roughness, and the degree of galvannealing). As an example of the parameter corresponding to the physical value, there is the logarithmic ratio between emissivities (ln ε a /ln ε b ) corresponding to the temperature in the vicinity of the surface. Therefore, a second parameter can be obtained on the basis of the correlation and a physical value can be obtained. When the emissivity or logarithmic emissivity ratio is used as the second parameter, the temperature in the vicinity of the material surface can be obtained from the second parameter and the detection signal.
摘要:
A method for measuring temperature based on infrared light which measures the temperature of a semiconductor element, the surface layer of which is formed with two kinds of materials having different emissivities and optical reflectances, based on the amount of infrared emission incident on an image taking means according to the invention, comprises the steps of taking an image by diffusing and letting the incident be the reflected light of a beam of light incident on the surface of the above semiconductor element on the light receiving face of the image taking means, followed by determining the area ratio at which each of the above two kinds of materials occupies the surface of the above semiconductor element by comparing the average brightness value of the above image with the brightness value of an image for the case that each of the above two kinds of materials independently forms the surface layer of the above semiconductor element, and obtaining the weighted average of the emissivities of the above two kinds of materials with the area ratio at which each of the above two kinds of materials occupies the surface of the above semiconductor element, followed by calculating the temperature of the above semiconductor element based on the weighted average and the actual amount of infrared emission.
摘要:
In an embodiment, a temperature measurement device is provided with: light collection means; extraction means; optical intensity calculation means; and temperature measurement means. The light collection means collects the emission spectrum of a measurement subject. The extraction means extracts beams having the wavelength of the atomic spectral lines and a beam having a wavelength in a wavelength region where there are no atomic spectral lines, from the emission spectrum collected by the aforementioned light collection means. The optical intensity calculation means calculates the optical intensities of the beams extracted by the aforementioned extraction means. The temperature measurement means calculates the temperature of the aforementioned measurement subject, based on the intensities of the beams calculated by the aforementioned optical intensity calculation means.
摘要:
The method is meant for the evaluating of the amount of micro and macro cracks in the pavement of a traffic lane, such as a road or street. The colder water beneath the pavement is under the load of heavy traffic pumped into the micro and macro cracks in the pavement and lowers the temperature of the pavement, so a large difference between the temperatures in different points on the pavement reveals a large amount of cracks. In the method, the examination span of the traffic lane is first selected. Thereafter the temperature T1 of the heavily loaded part of the pavement of the selected examination span and the temperature T2 of the lightly loaded part of the pavement of the same examination span are determined. A difference AT between the determined temperatures is calculated, which difference is compared to a reference value. If the difference is larger than the used reference value, the pavement lets through a significant amount of water. If the difference is smaller than the used reference value, the condition of the pavement is sufficiently good. The temperatures t r of the heavily loaded part of the pavement are measured at the wheel ruts and the temperatures t k of the lightly loaded part of the pavement are measured in the area outside the wheel ruts. The temperatures of the pavement are measured with an apparatus, which is placed in a vehicle travelling on the traffic lane. Alternatively the emissivity ε r of the heavily loaded part of the pavement and the emissivity ε k of the lightly loaded part of the pavement can be determined and the difference Δε can be compared to a reference value.
摘要:
Radiated light with a specified wavelength from a material (21, P, 201) is detected and a first parameter corresponding to the emissivity ratio is obtained from the detection signal. Since the emissivity takes on different values according to the condition of the surface of the material, the first parameter changes depending on the surface condition of the material. There is a correlation between a physical value indicating a condition of the material surface and the first parameter. The correlation remains equivalent even if a second parameter corresponding to the physical value is used instead of the physical value itself (for example, an optical physical value such as reflectivity and absorptivity, the thickness of a film formed on the material surface, the surface roughness, and the degree of galvannealing). As an example of the parameter corresponding to the physical value, there is the logarithmic ratio between emissivities (ln ε a /ln ε b ) corresponding to the temperature in the vicinity of the surface. Therefore, a second parameter can be obtained on the basis of the correlation and a physical value can be obtained. When the emissivity or logarithmic emissivity ratio is used as the second parameter, the temperature in the vicinity of the material surface can be obtained from the second parameter and the detection signal.
摘要:
The invention describes a process and device for measuring temperature and layer thickness during coating by prior art methods in semiconductor manufacturing, plasma, ion and other dry-etching plants and in the production of optical coatings. The current results of layer thickness and temperature measurements may be used in process control. The interference phenomena in thermal substrate radiation on the growing layer continuously cause the emissivity ε to change during coating, thus preventing the use of pyrometric temperature measurement, which gives rise to particular problems in multi-layer systems in which the current emissivity depends on the thickness of all the layer, their optical constants, the temperature-dependence of the optical constant and the observation angle and wavelength. The present invention solves these fundamental problems by determining the reflectivity R of the wafer using a reflectometer. According to the law of the conservation of energy, for non-transparent substrates ε = 1 - R, and hence the current emissivity of the entire (multi-layer) system can be directly determined with the reflectometer. The temperature is measured by means of a given evaluation rule, while the thickness is found by comparing the reflectometer curve with the theoretical layer thickness dependence.